Copyright
by
Honggun Park
1994



Nonlinear Finite Elemen{ Anaiysis

of Reinforced Concrete Planar Structures

Approved by

Dissertation Committee:

R. E. Klingner /&/Z"”ﬂ// Miy— M
D. L. Wheat X/ Ot Z/ W

J- L. Tassoulas l/fl/;’vp Vokwn L . 7:9$‘~ (ar
M. E. Kreger % ,%‘

VA v N
K. M. Liechti




Nonlinear Finite Element Analysis of Reinforced

Concrete Planar Structures

by

Honggun Park, M.S.

Dissertation
Presented to the Faculty of the Graduate School of
The University of Texas at Austin
in Partial Fulfillment
of the Requirements

for the Degree of

Doctor of Philosophy

The University of Texas at Austin

May, 1994



To my parents, wife, and daughter



ACKNOWLEDGMENT

The author would like to express his deepest thanks to Dr. Richard E.
Klingner and Dr. Dan L. Wheat for their continuous guidance, patience, and
friendship during his stay at The University of Texas at Austin. Special
thanks to them for reviewing every sentence of the author's dissertation in
spite of their busy schedules. Additional thanks for being given for
opportunity to serve as a teaching assistant and grader at the university.
Special gratitude goes to Dr. John. L. Tassoulas for giving impressive
structural analysis lectures which became a basis of the author's analysis
research.

The author would like to express thanks to his fellow Koreans in the
Department of Civil Engineering for their friendship and helpful advise. Also,
thanks to John J. Myers for his sincere friendship. The author cannot forget

his parents' encouragement and support for him.

Honggun Park



Nonlinear Finite Element Analysis of Reinforced

Concrete Planar Structures

Publication No.

Honggun Park, Ph.D.
The University of Texas at Austin, 1994

Supervisors: Richard Evans Klingner

Dan L. Wheat

The objective of this research is to predict the complete behavior up to
structural failure of reinforced concrete planar members under cyclic as well
as monotonic loading. The structural members to be addressed are beams,
columns, beam-column joints, and shear walls, all of which experience
damage initiated by tension cracking.

The proposed analytical approach will be able to simulate the
behavioral characteristics of reinforced concrete structural members, due to
crack opening and closing, compressive crushing, cyclic history of reinforcing

steel, and bond-slip between cracked concrete and reinforcing steel.



By simulating the complete range of structural response, the proposed
analytical approach can predict behavioral characteristics such as ultimate
strength, inelastic deformations, primary crack orientations, and failure
mechanisms, all of which are useful for the design and evaluation of
reinforced concrete structural members.

To accomplish the objectives noted above, this work includes an
investigation of material models for two-dimensional finite element analysis
under in-plane cyclic and monotonic loading. Also, several nonlinear solution
schemes are investigated to produce a numerically reliable analysis method.
The proposed material models and the numerical approach are verified by
using previously reported experimental results.

For the material model of cracked concrete based on the concept of
smeared cracking, the rotating orthotropic axes model with successive
cracking is proposed to complement the existing rotating crack model. In
addition to the proposed cracked concrete model, the existing material models
of reinforcing steel and bond-slip are implemented in the numerical program.
The reinforcing steel model idealizes strain hardening and the Bauschinger
effects. The bond-slip model idealizes the bond-deterioration due to cyclic

loading.
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1.0 INTRODUCTION
1.1 Motivation of This Research

Many years' experience has shown that reinforced concrete members designed
using standard design codes generally perform well under normal loads. However,
under extreme load conditions, reinforced concrete members behave nonlinearly; it is
often difficult to predict their strengths and inelastic deformation capacities. The
performance under extreme loads of structural members designed by current code
provisions is sometimes questionable from the standpoint of economy and safety.
Though current design provisions are being continuously refined with the goal of
designing more economical and reliable structures, more specific knowledge and
understanding of member behavior are still necessary. For that reason, analytical

research will be helpful in the following areas:

1) Current design provisions apply an integrated design process considering the
interaction between flexural and shearing actions for planar members.
However, in shear-dominated members such as deep beams, short columns,
beam-column joints, and low-rise shear walls, the stress-strain states across
the members are very complex, and it is difficult to define member strengths
in terms of combinations of flexural and shear strengths. Also, in current
design codes such as ACI 318-89 [41], which define the shear strength of a
member in terms of contributions from reinforcing steel and from cracked
concrete, the shear contribution of cracked concrete is obtained empirically,

and is open to question.



2)

3)

Retrofit of existing structural members damaged under extreme loads requires
damage assessment and estimation of remaining capacity. For this purpose,
more detailed information is needed regarding the ultimate strength and

nonlinear behavior of damaged members.

To investigate the nonlinear behavior of structural members under extreme
loading conditions, either laboratory experiments or analyses of the members
are required. However, since laboratory experiments are not always available
and affordable, predictions of member behavior using reliable analytical
methods will be helpful for the design of reinforced concrete structural
members. Also, to increase the reliability and to extend the application of
experimental results, it is desirable that these results be verified by
complementary analytical research reproducing the behavior of the test

specimens.

To meet the needs noted above, considerable analytical research has been

done on reinforced concrete planar members. However, most analytical research for

structural behavior uses simplifying assumptions for either the crack direction or the

stress-strain states. This type of analysis method is not appropriate for predicting the

behavior of planar members in which various crack directions and stress-strain states

exist. Therefore, two-dimensional stress-strain relations and multiple cracks should

be used to reasonably predict the behavior of planar structures.

According to the variation of crack direction during loading, cracked concrete

models using the concept of smeared crack and smeared reinforcement, are classified

into fixed orthotropic axes model and rotating orthotropic axes model. The rotating

2



orthotropic axes model has been frequently used because of simplicity in material
modeling. In this model, the behavior of concrete is defined by the equivalent
uniaxial stress-strain relations in current principal axes. Though there was a research
using this approach for concrete behavior without cracking under biaxial
compression, in many studies, this approach has been used for cracked concrete
which has the stress-induced orthotropic characteristics. The rotating orthotropic axes
model for cracked concrete is also called fictitious - or rotating - crack model.

The rotating orthotropic axes approach has been controversial by interpreting
the rotation of orthotropic axes as the rotation of material defect of concrete crack.
However, in many studies, the rotating orthotropic axes model show better prediction
of cracked concrete behavior than the fixed orthotropic axes model. Recently, the
application of the rotating orthotropic axes model has been extended to simple
members and load conditions.

This research will present a more logical interpretation of the rotating
orthotropic axes model, and it will extend its application to a variety of load
conditions and structural members. To enhance our ability to predict the behavior of
reinforced concrete members to failure, this study includes the behavioral
characteristics of cracked concrete, reinforcing steel, and bond-slip effects, all of
which affect overall member response. For this purpose, the material models should
be simple enough for stable numerical calculation, but also accurate enough to
describe material behavior. Also, the analytical process should be numerically

reliable for any type of structural behavior.



1.2 Objectives

The objective of this research is to predict the complete behavior up to
structural failure of reinforced concrete planar members under cyclic as well as
monotonic loading. The structural members to be addressed are beams, columns,
beam-column joints, and shear walls, whose structural failure is caused by material
failure initiated by tension cracking.

The proposed analytical approach will be able to simulate the behavioral
characteristics of reinforced concrete structural members due to crack opening and
closing, compressive crushing, cyclic history of reinforcing steel, and bond-slip
between cracked concrete and reinforcing steel.

By simulating the complete range of structural response, the proposed
analytical approach can predict behavioral characteristics such as ultimate strength,
inelastic deformations, primary crack orientations, and failure mechanisms, all of

which are useful for the design and evaluation of reinforced concrete structural

members.

1.3  Scope

To accomplish the objectives noted above, this work includes an investigation
of cyclic material models for two-dimensional finite element analysis under in-plane
cyclic and monotonic loading. Also, several nonlinear solution schemes are
investigated to develop a numerically reliable analysis method. The proposed
material models and the numerical approach will be verified by simulating material

and structural behavior.



The complete scope is presented below, with an emphasis on the original work

of this dissertation. The following tasks will be performed:

1)

2)

3)

4)

5)

6)

Starting from an existing monotonic model, develop a cracked concrete model

for general behavior in the following way:

a) Cracked concrete is idealized as an orthotropic material whose
orthotropic axes rotate due to progressive cracking.

b) A tensile post-cracking model (tension stiffening model) will be
proposed to address the progressive cracking process of concrete.

c) The concept of compression and tension damage surfaces will be
introduced to define two-dimensional stress-strain damage history under
cyclic loading.

Consider the cyclic behavior of reinforcing steel and bond-slip effects, using

existing cyclic models for reinforcing steel and bond-slip behavior.

Develop a finite element computer program to apply the proposed cracked

concrete model and the existing models of reinforcing steel and bond-slip.

Develop a reliable and efficient solution scheme for predicting complete

structural behavior, by investigating available nonlinear solution strategies,

iteration strategies, and convergence criteria.

Test the analysis program incorporating the material models and the solution

scheme to predict the behavior of structural members under monotonic and

cyclic loading.

Examine the range of application of the proposed analysis method.



20 DEVELOPMENT OF CRACKED CONCRETE MODEL

2.1 General

The proposed cracked concrete model will be developed by modifying an
existing monotonic orthotropic axes model, and by extending the modified model to
include cyclic behavior. For cyclic behavior, the general behavior of cracked
concrete is first idealized on the basis of experiments. Then, stress-strain laws

defining loading-unloading behavior will be added.

2.2  Vecchio's Orthotropic Axes Model

Vecchio and Collins [36] developed an orthotropic axes approach using
equivalent uniaxial stress-strain curves for cracked concrete behavior. In their
approach, the two-dimensional stress-strain behavior of cracked concrete is defined
by equivalent uniaxial stress-strain curves in orthotropic axes, which rotate to
principal axes during the loading history. For the equivalent uniaxial stress-strain
curves, empirical stress-strain relations based on shear panel tests were proposed for
compression softening and tension stiffening effects due to crack opening. In this
work, compression softening and tension stiffening effects are introduced in Chapter
3.0, Constitutive Laws for Cracked Concrete. Using the concept of smeared cracking,
the empirical stress-strain curves are defined in terms of average stress and strain
across tension cracks.

The essence of Vecchio and Collins' analytical approach is to simplify two-
dimensional stress-strain relations by using a total stress-strain relation instead of an

6



incremental one, and by assuming that principal stress axes coincide with principal
strain axes. The equivalent uniaxial stress-strain relations in rotating principal axes
are defined by the principal stress-strain relation of the empirical stress-strain curves.
According to Vecchio's shear panel tests [36], the principal stress and strain axes
deviate from each other as tension cracks widen. Nevertheless, the orthotropic model
precisely follows all aspects of overall panel behavior except tension stiffening. In
the tests, the tension stiffening stress, which is small compared with the compression
stress, is relatively insignificant for overall panel behavior. As a result, the existing
orthotropic approach provides a simple but accurate stress-strain model for cracked
concrete under monotonic loading.

To apply the existing monotonic stress-strain model for general loading
conditions, improvement and further investigation are required with respect to several
aspects of the existing model. First, a new tension stiffening model will be proposed
to replace the existing empirically obtained tension stiffening model. Next, the
assumption that principal stress axes coincide with principal strain axes will be
evaluated under general loading. For the cyclic stress-strain relation of concrete, the
damage surfaces providing the boundary of loading and unloading will be defined in
two-dimensional strain space. Based on the damage surfaces, a cyclic stress-strain

law for cracked concrete will be developed.



2.3  Development of Rotating Orthotropic Axes Model with Successive

Cracking

Under tension-compression stress states, concrete is disconnected by tension
cracking, and concrete struts resisting compression forces form in the crack direction.
Perpendicular to the crack direction, reinforcing steel resists tensile forces, and the
bonding action of reinforcing steel induces tension stiffening stresses in the concrete
(Figure 2.1). Accordingly, the behavioral characteristics of concrete in the crack
direction are completely different from those in the perpendicular direction.

Since concrete cracks provide directionality in the characteristics of concrete
behavior like that of naturally orthotropic materials, cracked concrete is usually
idealized as an orthotropic material. However, the orthotropic characteristics of
cracked concrete are different from those of naturally orthotropic materials in several
respects. Above all, since concrete cracking is a stress-induced defect, secondary
cracks can develop in any direction, in addition to the primary or initial cracking, if
the current principal tensile stresses approach the tension cracking stress. Moreover,
since concrete retains tensile stresses induced by bond of reinforcing steel after tensile
cracking (which is called tension stiffening stress in terms of average stress), the
stresses easily approach the tensile cracking stress in the rotating principal tensile
axis, and they induce secondary cracks. Next, though the primary crack direction is
visualized as coinciding with a principal tensile direction, the microcracks that define
the primary crack direction are not uniformly oriented, and they deviate from the
principal tensile direction. Therefore, the microcracks are scattered in the

neighboring directions as well as in the principal tensile direction, and they make it
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Figure 2.1 Stress variation in cracked reinforced concrete

easy for secondary cracking to occur. Accordingly, if the stress-strain state of
concrete changes during loading, concrete experiences successive cracking in rotating
principal tensile axes.

To model this complex concrete cracking process with conventional normal
and shearing stress-strain relations, the crack orientation is usually idealized. Using
the concept of smeared cracking, two different orthotropic axes models were
developed, based on different assumptions for the variation of crack orientation
during loading history. These are the fixed-crack model and the rotating-(or
fictitious-) crack model.

In the fixed-crack model, once cracking occurs in a principal tensile direction,
the crack direction does not change until the crack closes. In the rotating-crack
model, the crack orientation rotates to principal stress axes or principal strain axes,

depending on the assumption made. In both models, only one crack direction is

9



allowed in an equilibrium condition; the orthotropic axes coincide with that crack
direction. Also, shear stiffness is used to represent the effects of aggregate interlock
and friction across cracks.

Shear panel tests under uniform shear [38] show that after primary cracking,
the tension stiffening stresses in rotating principal axes are much larger than those in
direct tension. If the orientation of principal axes does not change during the loading
history, the tension stiffening stress is almost the same as that in direct tension. This
phenomenon implies that the deviation of principal axes from the primary crack
direction increases the tension stiffening stress. Also, it should be noted that, whether
or not the principal axes rotate, the principal compressive stress-strain relations are
the same as the uniaxial compressive stress-strain relations, including the
compression softening effects due to crack opening.

Obviously, once primary cracking occurs in a principal axis, the crack
orientation does not change during the loading history. However, under new
equilibrium or compatibility conditions, aggregate interlock transfer shear forces
across cracks. Accordingly, the stress-strain states of concrete change, and principal
axes are established in directions different from the primary crack orientation. In the
current principal tensile axis, if the principal tensile stress approaches the cracking
stress, secondary cracking occurs. Since the primary crack opening contributes to the
principal stress and strain, and since the secondary cracking occurs in the principal
tensile axis, the magnitudes of principal tensile stresses in the current principal axis
depend on the contributions of primary and secondary cracks. Since secondary
cracking in the current principal axis requires tensile cracking stress, the tension

stiffening stress becomes larger than that in direct tension at the same tensile strain.
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On the other hand, in cases when the nonlinear behavior of the principal
compressive stress-strain relation affects overall reinforced concrete strength, the
tension stiffening stress and the corresponding material strain are negligible compared
with the compressive stress and strain. Also, the tension stiffening stress induced by
the bonding action of reinforcing steel is localized around the reinforcing steel and the
cracking zone (Figure 2.1). Since this tension stiffening stress and the corresponding
material strain do not significantly affect the principal compressive stress-strain
relation, the stress-strain state of cracked concrete is almost uniaxial compression.
Even if the principal axes rotate after cracking, the principal tensile stresses are less
than the tension cracking stress, and the uniaxial compression stress-strain state will
therefore be maintained.

As mentioned before, the fixed crack model allows only primary cracking, and
orthotropic axes are aligned with the primary crack direction until the primary cracks
close. To consider shear behavior, such as aggregate interlock, the fixed crack model
uses an effective shear stiffness, which does not involve the material strength of
concrete. Therefore, the combination of the shear, compressive, and tensile
stiffnesses in the primary crack direction cannot represent the material behavior of
concrete under changes in equilibrium condition. Thus, the principal tensile stress
induced by the shear stiffness may exceed the cracking stress, and the principal
compressive stress-strain relation may be inconsistent with the material behavior of
concrete. In fact, it is almost impossible to consider the material shear stiffness in
terms of average stress and strain because the average strain includes crack opening in
addition to material strain.

On the other hand, in the rotating crack model, orthotropic axes rotate to the
current principal axes during the loading history. Once the principal tensile axis
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rotates from the primary crack direction or from the previous principal axis, the
primary crack is assumed to rotate to the current principal tensile axis, and secondary
cracking due to shear transfer between crack surfaces is neglected. Therefore, the
rotating crack model underestimates tension stiffening stresses in rotating principal
axes because the contribution of secondary cracking stress to the tension stiffening
stresses is neglected. However, the rotating crack model maintains the uniaxial
stress-strain relation in principal compressive axes. Accordingly, if the tension
stiffening stress is negligible compared with the compressive stress, the rotating crack
model gives a more reasonable behavior of cracked concrete than the fixed crack
model.

To improve the above-mentioned shortcomings of the fixed-crack and the
rotating-crack models, this research proposes a rotating orthotropic axes model with
successive cracking. The fixed-and rotating-crack models idealize the primary crack
direction in an equilibrium condition and they make the orthotropic axes coincide
with that direction. In the proposed approach, the crack direction is not idealized.
Instead, it is assumed that concrete cracking occurs progressively as the principal
tensile axes rotate. The progressive cracking process due to primary and secondary
cracking continuously gives behavioral directionality of concrete in rotating principal
axes. Thus, the orthotropic axes rotate to the principal axes during loading (Figure

2.2). The proposed cracked concrete model defines the following material behavior:

1) If a tensile stress approaches the tension cracking stress in a principal tensile
axis, primary cracking occurs, and its orientation is fixed to the principal
tensile axis. Under further loading, if the principal axes rotate from the

primary crack direction, the orthotropic axes follow the principal axes.
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Figure 2.2 Rotation of orthotropic axes under changes in equilibrium condition

2)

3)

In the principal tensile axes, since the increase in principal tensile strain
requires secondary cracking in addition to the primary crack opening, the
tension stiffening stresses in the orthotropic axes are determined by the
contributions of secondary cracks due to reinforcement which remains
elastic.

In the principal compressive axes, since the tension stiffening stress and the
corresponding material strain do not significantly affect the principal
compressive stress-strain relation, the stress-strain state of concrete is almost
uniaxial compression. Therefore, the principal compressive stress-strain
relation is defined by the uniaxial compressive stress-strain curve, including

the compression softening due to tensile cracking.
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24  Orientation of Orthotropic Axes under General Loading

In the existing model [38], it is assumed that principal stress axes coincide
with principal strain axes, and that the two-dimensional stress-strain relation is
defined by two equivalent uniaxial stress-strain curves on orthotropic axes that rotate
to the principal axes during loading history. This assumption simplifies the definition
of two-dimensional stress-strain relation because it eliminates the controversy over
whether the orientations of orthotropic axes follow the principal stress axes or the
principal strain axes. Also, since principal stress axes coincide with principal strain
axes, there is no need to define shear stiffness. As a result, the two-dimensional
stress-strain relation depends only on the total stress-strain relations of equivalent
uniaxial stress-strain curves in the principal axes.

Although the above assumption is made for analytical convenience, it gives
reasonable estimates of the actual orientation of principal axes obtained from panel
tests under uniform shear [38]. According to those experiments, principal stress axes
do not deviate significantly from principal strain axes until tensile cracks open wide.
Though the cracks are wide, the orientations of principal axes in the analysis are close
to the average directions of principal stress axes and principal strain axes in the
experiments.

Under cyclic loading, shear deformation or strain in crack surfaces does not
induce shear stress as the number of load cycles increases because of fatigue damage
at the crack surfaces. Thus, the deviation of the two principal axes increases as the
crack opening increases. If fatigue damage is severe, just after unloading, principal
stress axes can deviate momentarily from principal strain axes by as much as 90

degrees. Apart from such extreme cases, as crack width increases, the deviation of
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principal stress and strain axes gradually increases. As cracks close, the principal
axes again coincide.

For numerical convenience, the proposed material model uses the assumption
that principal stress axes coincide with principal strain axes. Stevens et al. [34] failed
to predict cyclic structural behavior using this assumption. In Chapter 7.0, the
proposed material model will be used to demonstrate the validity of the assumption

for cyclic behavior by verifying material and structural behavior.

2.5  Compressive Cyclic Behavior (Compression Damage Surface)

After cracking, concrete struts form in the primary crack direction. The
concrete struts resist compressive stresses in the crack direction. Also, tension
stiffening stresses are induced by bond of reinforcement across the crack. However,
when compression failure affects the overall strength of reinforced concrete, the
tension stiffening stress is negligible compared with the compressive stress. Even if
the principal axes deviate from the primary crack direction or the concrete strut
direction, the principal tensile stress will not exceed the tensile cracking stress
because of secondary cracking. Therefore, the stress state of concrete strut is close to
uniaxial compression.

As unloading occurs, the compressive stress in the concrete struts decreases
and the cracks close. Under reversed loading, new concrete struts with closed cracks
form in the previously unstressed direction. The new concrete struts are in
compression. In the direction of the previous concrete struts, new cracks open, and
concrete remains unstressed during reloading. During cyclic loading, concrete retains

its uniaxial compressive stress state, even though the orientation of the uniaxial
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compression changes. Consequently, concrete experiences a series of uniaxial
compressive stress states with different orientations under both monotonic and cyclic
loading.

To eliminate the directional characteristics of material damage, the nonlinear
behavior of plain concrete is usually defined by the relation of stress and strain
invariants which are composed of principal stresses and strains. If concrete maintains
uniaxial stress states, and if the uniaxial stresses have a uniform magnitude during
rotation of the principal axes, the invariants due to the uniaxial stress and strain also
maintain uniform magnitudes. In other words, although the principal axes rotate
during loading, the magnitudes of the invariants depend on the magnitudes of uniaxial
stress and strain regardless of their orientation. Accordingly, the relation of stress and
strain invariants directly implies the relation of uniaxial stress and strain, and the
nonlinear cyclic behavior of concrete depending on the invariants can be defined by
equivalent uniaxial stress-strain relation in principal axes rotating during loading
history.

Actually, the nonlinear stress-strain relation defined by the invariants
determined by experimental uniaxial stress-strain curves under direct compression.
Therefore, the experimental uniaxial stress-strain curves are used without
modification for equivalent uniaxial stress-strain curves in the rotating principal axes.
The compressive uniaxial stress-strain relation becomes the compressive principal
stress-strain relation in the rotating principal axes. This can be verified by test results
given by Vecchio [38]. According to the test results, the equivalent uniaxial stress-
strain curve given by Vecchio follows precisely the principal compressive stress-
strain relations in tests, whether or not the principal axes rotate. This verifies the fact
that the uniaxial compressive stress-strain relations representing material damage
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remain the same in rotating principal axes, as long as the uniaxial states are
maintained.

In the equivalent uniaxial stress-strain curves of the proposed material model,
compressive stress is defined in terms of the corresponding compressive strain; the
boundary between unloading and loading in cyclic behavior is defined by the
maximum compressive strain. The maximum strain determines the magnitude of the
compression damage surface. The damage surface has uniform or isotropic
magnitudes in all directions because if concrete maintains uniaxial stress-strain states
in any direction, the amount of uniaxial strain corresponding to the current strain
invariants is uniform in all directions regardless of the orientation of uniaxial stress-
strain state. Accordingly, the isotropic damage surface defined in principal strain
space can be directly used in terms of uniaxial strain.

In summary, the compressive nonlinear behavior of cracked concrete is
defined in the following way: Since cracked concrete maintains uniaxial compressive
stress states, the experimental uniaxial nonlinear stress-strain curve is used for the
equivalent uniaxial stress-strain relation in rotating principal axes. Once a
compressive principal strain exceeds the compression damage surface, the equivalent
stress-strain relation lies on the envelope curve or loading curve, and the compression
damage surface expands uniformly in all directions to the magnitude of the
compressive principal strain. As long as compressive strains remain inside the
damage surface, the compressive damage surface maintains the same magnitude in all
directions. Under unloading in compression, the equivalent stress-strain relation lies

on the unloading and reloading curves which connect the compression and tension

damage surfaces.
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2.6  Tensile Cyclic Behavior (Tension Damage Surface)

If tension cracking occurs under a tension-compression stress state, the
damage localizes in the principal tensile axis and the damage contribution obviously
vanishes in the orthogonal axis. Under reversed loading, since the orthogonal axis
has no tension crack damage under the previous loading, the orthogonal axis should
experience new tensile cracking. If a principal axis in which the current principal
tensile stress and strain exist experienced tensile crack damage under a previous
loading history, the principal stress-strain relation would exist on the reloading curve
until the principal strain reached the maximum tensile strain or the tension damage
surface. Therefore, for cyclic behavior of cracked concrete, a tension damage surface
is required to define the anisotropic damage distribution in two-dimensional space,
which provides the boundary between unloading and loading behavior.

The initial tension damage surface forms due to primary cracking; the damage
contribution due to current tensile cracking is concentrated on the current principal
tensile axis and decreases sharply in neighboring directions. The tension damage
surface expands from the initial tension damage surface as a tensile strain exceeds the
surface. If a tensile strain exceeds the current tension damage surface, a damage
influence surface which is the same shape as the initial tension damage surface, forms
due to the tensile strain. If the damage influence surface exceeds the current tension
damage surface in a given direction, the tension damage surface expands to the
damage influence surface in that direction. Otherwise, the tension damage surface
retains its previous shape. Thus, if the principal axes rotate during loading, the
tension damage surface become anisotropic, different from that of the isotropic

compression damage surface.
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In the proposed cracked concrete model, tension behavior is defined by the
tension damage surface in the following way: Once tension cracking occurs in a
principal axis, the tension damage surface of the primary cracking forms in the
principal axis and the neighboring directions. If a principal strain exceeds the initial
tension damage surface under further loading, the tension damage surface expands to
the damage influence surface due to the principal tensile strain. Under unloading, the
tension damage surface does not change, and the equivalent stress-strain relation
exists on unloading curves which connect the tension damage surface and the
compression damage surface.

As reloading occurs, the equivalent stress-strain relation lies on the reloading
curves until the tensile strain reaches the tension damage surface. If the tensile strain
exceeds the tension damage surface, the equivalent stress-strain relation follows the

tensile envelope curve or the loading curve, and the tension damage surface expands.
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2.7

Definition of Two-Dimensional Stress-Strain Behavior of Cracked

Concrete.

In the proposed cracked concrete model, cracked concrete behavior is

idealized based on several basic assumptions:

1)

2)
3)

4)

The concept of smeared cracking is assumed to be valid. The smeared crack
is regarded as a continuous material strain. Based on the concept of smeared
cracking, the tensile stress and strain of cracked concrete are defined in
terms of average stress and strain across tension cracks.

Principal stress axes coincide with principal strain axes.

Cracked concrete is idealized as an orthotropic material, and the orthotropic
axes coincide with principal axes. The progressive cracking process due to
primary and secondary cracking continuously gives behavioral directionality
of concrete in rotating principal axes. Accordingly, the orthotropic axes
rotate to the principal axes during loading.

In the orthotropic axes, the equivalent uniaxial stress-strain relations in two
orthogonal principal axes are uncoupled in terms of material strain. In
cracked concrete, the tension stiffening stress is negligible compared with
the compressive strength of concrete, and the tension stiffening stress
induced by bonding action of reinforcing steel is localized around the
reinforcing steel and the cracking zone. Accordingly, the reciprocal effect
of the two stress-material strain relations is neglected. To address the effect
of crack opening, the equivalent uniaxial stress-strain relations are coupled

in terms of average strain.
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On the basis of the above assumptions, the general behavior of the proposed

cracked concrete model is defined in the following way:

1) The two-dimensional stress-strain relation is defined by twc egquivalent
uniaxial stress-strain curves in orthotropic axes. The orthotropic axes rotate
to current principal axes during loading history.

2) The equivalent uniaxial stress-strain curve consists of envelope curves
(loading curve) and unloading-reloading curves connecting the envelope
curves (Figure 2.3). The compressive envelope curve depends on the

uniaxial stress-strain relation, including the compression softening effect

o compression
damage surface
/
»
tension damage surface
AN
-~
£
loading path . loading path
in tension unloading-reloading path In compression
1

available stress-strain field with current damage

Figure 2.3 Equivalent uniaxial stress-strain curve
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3)

4)

due to crack opening. The tension stiffening stress of the tensile envelope
curve is determined by the influence of each reinforcement layer which
remain elastic.

The equivalent uniaxial strain induces either isotropic damage in
compression or anisotropic damage in tension. If the equivalent uniaxial
strain exceeds compression or tension damage surface, the damage surface
expands according to its expansion rule, and the equivalent stress-strain
relation follows the compressive or tension envelope curve or loading curve.
If the equivalent uniaxial strain exists inside the damage surfaces, the
equivalent stress-strain relation exists on the unloading-reloading curves

connecting compressive and tensile envelope curves at the damage surfaces.
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3.0 CONSTITUTIVE MODEL FOR CRACKED CONCRETE

31 General

In Chapter 2.0, on the basis of that idealization of cracked concrete behavior,
the concepts of the proposed cracked concrete model were introduced. In this
chapter, the stress-strain relations of the cracked concrete model will be specified, and
the general behavior will be presented in detail.

In the proposed cracked concrete model, cracked concrete is regarded as an
orthotropic material showing tensile and compressive behavioral characteristics, and
with orthotropic axes that coincide with current principal axes. In the orthotropic
model, the interaction between the material compressive and tensile strains is
neglected, as mentioned in Section 2.2. Accordingly, the tensile and compressive
behaviors in orthotropic axes depend only on principal tensile strains representing
cracking opening, and can be defined by independent equivalent uniaxial stress-strain
curves in tension and compression. In other words, the two-dimensional stress-strain
relation is defined by two independent equivalent uniaxial stress-strain curves in
orthotropic axes which rotate to principal stress axes.

The previous monotonic model of cracked concrete [38] includes compression
softening and tension stiffening effects due to crack opening. The proposed cracked

concrete model adds the following behavioral definitions for the general behavior of

cracked concrete:
1) A two-dimensional tension stiffening curve considering the progressive
cracking process;
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Figure 3.1 Uniaxial compressive stress-strain curve

2) Equivalent uniaxial cyclic stress-strain curves, composed of envelope and
unloading-reloading curves;
3) Tensile and compressive damage surfaces in two-dimensional strain field,

defining the boundary between loading and unloading.

3.2  Equivalent Uniaxial Stress-Strain Curve in Compression

Stress-strain relations in principal compressive axes are defined by an
equivalent uniaxial compressive stress-strain curve, composed of envelope and
unloading-reloading curves. Since the stress-strain states of concrete are almost
uniaxial, the fundamental form of the envelope curve is based on a compressive
uniaxial stress-strain curve, shown in Figure 3.1. However, it has been acknowledged
by several researchers [11, 38] that, unlike the pure uniaxial stress-strain relation in
compression, the compressive strength of cracked concrete significantly decreases

due to tension cracking.
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Figure 3.2 Compression softening effect

After tension cracking, reinforcing steel resists the tensile stress, and concrete
struts separated from each other by tension cracks resist compressive stress (Figure
2.1). Usually, primary crack directions are visualized as coinciding with the current
principal tensile direction. However, the microcracks composing the primary crack
are not uniformly oriented; they deviate from the principal tensile direction.
Therefore, as the cracks widen, the concrete struts are disconnected and finally crush
(Figure 3.2). In other words, the deviation of microcracks from the principal axes
reduce the effective area of concrete struts. Accordingly, the compressive strength of
concrete decreases due to crack opening. This phenomenon is called compression
softening due to crack opening.

Vecchio and Collins [36, 38] verified this phenomenon clearly by shear panel

tests under in-plane loading. They showed that tension cracking causes compression
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Figure 3.3 Compression softening equation proposed by Vecchio [38]

softening in tension-compression stress fields, and that the compressive strength
depends on the crack width. Finally, they proposed an equivalent uniaxial stress-
strain curve including the compression softening effect. According to their proposed
stress-strain relation, the compressive strength in a compressive principal axis
decreases as the principal tensile strain representing the current crack width increases
in the orthogonal principal tensile axis. The relation between the compressive

strength and the principal tensile strain is defined by the following equation (Figure

3.3):

f
= < do' <f_, 1
% = os-0sEi " T G-

where f/ is the cylinder strength, o, is the compressive strength, & is the

compressive strain corresponding to o, and €, is the principal tensile strain.
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Figure 3.4 Compressive envelope curve

Vecchio and Collins applied this empirical equation for the compressive equivalent
uniaxial stress-strain curve in their orthotropic axes model.

As shown in Figure 3.4, the proposed compressive envelope curve consists of
three parts: an ascending branch, a descending branch, and a final plateau. The

ascending branch is defined by a widely used parabolic equation for uniaxial stress-

strain relations in compression [32, 36]):

2
o,=c*| 2 (5—) - (6—) . (3.2)
SC 8{.’

In the proposed envelope curve including compression softening due to crack
opening, the compressive strength, o0, in a principal compressive axis, depends on

the principal tensile strain, €,, in the orthogonal axis, as defined by Equation 3.1.
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Figure 3.5 Cyclic stress-strain relation in uniaxial compression

proposed by Karsan and Jirsa [22]

The descending branch is defined by a linear equation connecting the
ascending branch and the final plateau. Beyond the final strain, €/, the compressive
stress is assumed to be a constant, 6/. The stress-strain relation in the descending
branch represents material ductility which usually depends on the confinement due to
reinforcement. Therefore, the final stress and strain should be appropriately
determined according to the confinement. In the analysis program developed here,
the final stress and strain are user-specified.

Though the unloading-reloading behavior of cracked concrete is very
complex, this research uses two compressive cyclic models based on the unloading-
reloading behavior in uniaxial compression: a hysteresis model, and a simplified
model.

Karsan and Jirsa [22] performed an experiment to characterize unloading-

reloading behavior under repeated uniaxial compression. According to their tests, the
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unloading-reloading stress-strain relation exists in the stress-strain field bounded by
envelope curves, and the cyclic behavior can be defined by the unloading-reloading
curves connecting several key points. As shown in Figure 3.5, these key points are
the maximum strain, the common point, the permanent strain, and the restoring strain.
The maximum strain on the envelope curve defines the boundary between loading
and unloading. The permanent strain is irrecoverable under complete unloading, and
is defined by a function of the maximum strain. At the common point, the reloading
curve crosses over the unloading curve. According to the experiments of Karsan and
Jirsa, the common point is not fixed, but moves depending on the previous unloading-
reloading history. If unloading-reloading occurs beyond the common point limit, the
common point lies at the common point limit. If repeated loading occurs within the
common point limit, the common point stabilizes at the stability limit. The common
point limit and the stability limit lie on curves whose shapes are equivalent to the
compressive envelope curve with reduced maximum strengths of 0.9f, for the
common point limit, and 0.75 f; for the stability limit.

According to the above experiments, the unloading-reloading curve is defined
based on the compression envelope curve. However, in the equivalent uniaxial stress-
strain curve, since the envelope curve including compression softening depends on
the current principal tensile strain, it is difficult to define the key points in the same
way as the experimental results. As shown in Figure 3.6 (a), the proposed hysteresis
model uses a simplified unloading-reloading behavior based on the cyclic model of
Darwin and Pecknold [15, 16, 17].

The common point is set to the common point limit. The stability limit is
defined as the turning point. At the turning point, the stiffness of the unloading curve
changes from the initial elastic stiffness to a degraded stiffness. Eliminating the
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Figure 3.6 Proposed cyclic stress-strain curve in principal compressive axes
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restoring point, the reloading curve beyond the common point follows the same path
as the unloading curve. The unloading-reloading curves are composed of a series of
straight lines connecting the key points. In the stress-strain field bounded by the
unloading-reloading curves, the stress-strain relations follow the transition curve
connecting the unloading and reloading curves. When the compressive strength of
the envelope curve decreases by the tensile strain in the orthogonal axis, the
maximum strengths of the common point curve and the turning point curve also
decrease proportionally to the reduced compressive strength of the envelope curve.
The reduced maximum strengths are 0.85 f; for the common point curve and 0.65f;
for the turning point curve, slightly different from the proposal of Karsan and Jirsa.
The permanent strain, &7, is defined by the following function of the maximum

compressive strain, €, and the strain corresponding to the ultimate stress, £.':

[ m m 2 m

& = 0145 (8—) +0.13 (E; )] for(ecu ] < 3.0 (3.3.2)
ec ec ec
" [ er er

£ = & |-1305 + (e—ﬂ for( e ) > 3.0 (3.3b)

In the proposed simplified model as shown in Figure 3.6.(b), the unloading-
reloading behavior is simplified by a straight line connecting the maximum
compressive strain and the permanent strain, so that the stress-strain paths of

unloading and reloading are the same.
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3.3  Equivalent Uniaxial Stress-Strain Curve in Tension

Like the compression envelope curve, the proposed tensile envelope curve
consists of an ascending branch, a descending branch, and a final plateau (Figure 3.7).
The ascending branch defines elastic tensile stress-strain relations before cracking,
and the descending branch defines post-cracking behavior or tension stiffening
behavior.

Until now, tension stiffening effects have been studied primarily for uniaxial
stress states; current tension stiffening models for two-dimensional stress states use
either uniaxial tension models or empirical equations.

In two-dimensional stress states, the stress states of concrete can change after
initial cracking. In the new equilibrium conditions, secondary cracking occurs in the
new principal axes, which differ from the previous principal axes. Accordingly, the
tension stiffening behavior associated with new equilibrium should differ from that
associated with the previous equilibrium condition. This research proposes a two-
dimensional tension stiffening model based on the variation of two-dimensional strain
states.

First, uniaxial tension stiffening behavior will be discussed, as the basis for
the proposed tension stiffening model.

In plain concrete, tension cracking occurs abruptly by the formation of one
dominant crack. Therefore, as soon as cracking occurs, the cracking energy is quickly
released, and concrete tensile stresses decrease sharply with respect to average strain
(Figure 3.8). On the other hand, in reinforced concrete, bond with reinforcement

prevents cracked concrete from releasing the existing tensile stress quickly. As a
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Figure 3.8 Tensile stiffening effect
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result, tensile cracks spread over a large area, and the tensile stresses decease
gradually. This phenomenon is represented by tension stiffening.

If the reinforcement between crack surfaces yields, the cracks widen, and new
tensile cracking does not occur. Thus, the tension stiffening stresses rapidly
disappear or retain very small amount of tensile stress. In the proposed tension
stiffening model, the basic tension stiffening unit corresponding to a reinforcement
layer is defined as a simple uniaxial tension stiffening model in Figure 3.9.

According to the shear panel tests performed at The University of Toronto
[38], the details of which will be given in Chapter 7.0, tension stiffening stresses are
much larger than those under uniaxial tension at the same tensile strain (Figures 7.2 -
7.9). Shear panel PV4 in Figure 7.2 is reinforced by two orthogonal reinforcement
layers with the same reinforcement ratios. The uniform shear load is resisted by
concrete in compression and reinforcement in tension. Since shear panel PV4 is
isotropically reinforced, the principal stress directions do not change during loading.
As the uniform shear increases, the reinforcement quickly approaches yield.

The other shear panels are anisotropically reinforced by two orthogonal
reinforcement layers with different reinforcement ratios. As a reinforcement layer
yields first, the principal tensile axes gradually rotate to the direction of the other
reinforcement layer, which remain elastic. As the principal axes deviate from the
previous principal axes, the load capacities of the shear panels gradually increase. At
the same time, principal compressive strains significantly increase. As a result, the
reinforcement strain does not increase as fast as the principal tensile strains.
Therefore, the tensile strain of the reinforcement still remains within the elastic range,
even with a large principal tensile strain; the reinforcement in the elastic range

induces the tension stiffening stress.
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According to uniaxial tension stiffening models, tension stiffening is affected
by the reinforcing steel ratio, the yield stress and strain, the bar spacing, and the bar
diameter. However, in two-dimensional space, it is difficult to assess accurately the
influence of the above factors on the rotating principal axes. In the author's research,
a simple tension stiffening model is proposed and it satisfies the following minimum

requirements for two-dimensional tension stiffening effect:

1)  Cracked concrete retains significant tension stiffening stresses as long as at
least one reinforcement layer remains unyielded.
2)  After yielding of reinforcement, the combined stresses of cracked concrete

and the reinforcement should be the same as the yield stress of the

reinforcement.

To idealize the two-dimensional tension stiffening stress-strain relation, it is
assumed that each reinforcement layer has its own tension stiffening stress
corresponding to the tensile strain in the reinforcement direction (Figure 3.9 (b)). The

effect of the hypothetical tension stiffening stress, o, on the principal tensile stress

axes is defined as follows (Figure 3.9 (c));

0, = O, cosf , 34

where 0, is the equivalent tension stiffening stress in the current principal tensile
axis, and 0@ is the angle between the current principal tensile axis and the
reinforcement direction. The largest equivalent tension stiffening stress is assigned to

the current tension stiffening stress.
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In Figures 7.2 - 7.9, the proposed tension stiffening model is compared with
the shear panel tests, Series PV and PB, and with previous analyses by Vecchio [38]
and Stevens [7]. As shown in those figures, the proposed model results in reasonable
tension stiffening stresses whether or not the principal axes rotate during loading.
More detailed comparison with the shear panel tests will be given in Chapter 7.0.

According to experiments in direct tension, cyclic behavior in tension is very
similar to that in compression. Therefore, the same definition of cyclic behavior as in
compression is possible. However, since the small variation of tension stiffening
stresses does not affect overall member behavior, the proposed tensile cyclic stress-
strain behavior is simplified as follows. The maximum strain defining the boundary
between loading and unloading is determined by the tension damage surface defined
in Section 3.4. The secant which connects the maximum strain and the origin (or
reference point) defines the unloading-reloading stress-strain relation as shown in

Figure 3.10; hysteresis under repeated and cyclic loading is not considered.

Figure 3.10 Tensile unloading-reloading curve
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34  Definition of Cyclic Stress-Strain Relations

According to shear panel tests under uniform cyclic shear [34], as cracks
close, the stress-strain relation is very complex due to contact at the crack surface and
the interaction between cracked concrete and reinforcing steel. In Ref. 34, a complex
cyclic model of cracked concrete is proposed. The model is developed from the
experimental data which are interpreted on the basis of the concept of smeared crack
and smeared reinforcement. However, the concept of smeared crack and smeared
reinforcement has shortcomings in idealizing the interaction between multiple cracks
and reinforcement, which will be explained in Section 4.1. In this study, since the
complex stress-strain relation is not yet generalized, and for computational
convenience, simplified cyclic models of cracked concrete is used.

In the proposed cracked concrete model, the compressive and tensile stress-
strain relations in material principal axes are independent in terms of material stress-
strain behavior. Accordingly, two-dimensional stress-strain relations are defined by
the two independent equivalent uniaxial stress-strain curves in material principal axes
or in principal stress axes. Based on the cyclic uniaxial compressive and tensile
stress-strain relations previously defined in Sections 3.2 and 3.3, this research uses
two cyclic equivalent uniaxial stress-strain curves; a simplified model and a hysteresis
model. The simplified model in Figure 3.11(a) consists of the tension and
compression envelope curves, and the unloading-reloading curves connecting the two
envelope curves. The hysteresis model in Figure 3.11(b) uses the transition curve
connecting unloading and reloading curves, in addition to the envelop curves and the
unloading-reloading curves, so that the hysteresis model allows different unloading

and reloading paths in compression.
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Figure 3.11 Equivalent uniaxial stress-strain curve
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As shown in Figure 3.11, the cyclic equivalent uniaxial stress-strain curve in a
principal axis is defined by several key points (or strains), such as the maximum
strains, reference point, permanent strain, common point, turning point, and unloading
and reloading points. Since principal axes rotate during loading history, these key
strains need to be defined in a two-dimensional strain field. For this purpose, the
proposed cracked concrete model introduces tension and compression damage
surfaces, a reference point surface, and unloading and reloading surfaces.

The compression damage surface defines the maximum strain representing
compression damage in principal compressive axes. As mentioned in Section 2.5,
though principal compressive axes rotate in a new equilibrium condition, the
compressive strain representing the current concrete damage is uniform in all
directions because the rotating principal axes maintain uniaxial stress-strain states in
compression due to successive tensile cracking in principal tensile axes. Therefore, if
a principal compressive strain exceeds the maximum strain or the compression
damage surface, the surface expands isotropically to the magnitude of the
compressive strain (Figure 3.12). Otherwise, the compression damage surface
maintains the magnitude of the current maximum strain. In the same way, the
unloading and reloading surfaces defined only in compressive stress-strain field are
uniform in all directions.

On the other hand, tension cracking inducing tension damage is obviously
limited to the current principal tensile axis and the neighboring directions. In the
proposed model, the damage in the neighboring directions is defined by the damage
influence surface due to current tension cracking or principal tensile strain. If a

principal tensile strain exceeds the tension damage surface, the tensile strain forms its
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damage influence surface within 30 degrees in either side of the current principal

tensile axis. The damage influence surface is defined by
€ = & cos (3A6), (3.5)

where €™ 1is the maximum strain in the current principal tensile axis, and €, is the
maximum strain in the direction deviating by A@ from the current principal tensile
axis. The tensile damage surface expands to the current damage influence surface.
Since the damage influence surface is not uniform, the tension damage surface is
anisotropic, unlike the compression damage surface. If principal tensile axes continue
to rotate under further loading, and if the tension damage surface becomes more
irregular, considerable computer memory is required to define the entire irregular
surface. Thus, the proposed cracked concrete model designates eight reference
directions in a two-dimensional strain field, each separated from each other by 22.5
degrees. In each reference direction, if the damage influence surface due to current
principal tensile strain exceeds the tension damage surface, the tension damage
surface expands to the current damage influence surface (Figure 3.13). The
maximum strain in a principal tensile axis is linearly interpolated between the
maximum strains or the tension damage surface in the reference directions. Although
the interpolated maximum strain underestimates or overestimates the exact maximum
strain, the discrepancy between the exact maximum strain and the interpolated
maximum strain is indiscernible in member behavior.

As shown in Figure 3.11, the reference point is the starting point from which
the tensile envelope initiates. If concrete experiences compression damage before
tensile cracking, under unloading, the permanent strain due to the compression
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damage remains irrecoverable, and under reversed loading, the tensile strain relation
starts at the permanent strain. Once the tensile strain exceeds the cracking strain, the
reference point is set to the current permanent strain. If there is no compression
damage before tension cracking, the reference point is set to the origin or zero strain.
Afterwards, even though additional compression damage develops under further
loading, the reference point does not change. The position of the reference point in a
principal axis depends on the compression damage of concrete when the tensile strain
in the principal axis initially exceeds the cracking strain. As with the tension damage
surface, the reference strain is determined independently in eight reference directions.
If the tensile strain in a reference direction exceeds the cracking strain, the reference
strain in the direction is set to the permanent strain due to the current compression
damage. The reference strain in a principal axis is determined by linear interpolation

between the reference strains in the neighboring reference directions.

3.5  Strategy for Cyclic Behavior

As in Section 3.4, this section describes how the tension and compression
damage surfaces are defined according to the progression of concrete damage, and
how the stress-strain relation of cracked concrete is defined in two-dimensional space
on the basis of those definitions.

The proposed cyclic stress-strain behavior is defined in three regions, divided
by the maximum strains, and by the unloading and reloading points (Figures 2.3 and
3.11). Beyond the maximum strain in either tension or compression, the stress-strain
relation follows the envelope curve. Between the maximum strains, the stress-strain

relation exists in the stress-strain field bounded by the unloading and reloading
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curves. Between the unloading and reloading points, the stress-strain relation exists
on the transition curve. Beyond the unloading and reloading points up to the
maximum strains in compression and tension, the stress-strain relation follows the
unloading-reloading curves.

According to the progression of concrete damage, the cyclic behavior of

cracked concrete is classified into five developmental stages (Figure 3.14):

I)  Elastic range without permanent damage;

II) Inital tension damage without compression damage;

IIT) Initial compression damage without tension damage;

IV) Damage in both tension and compression after initial tension damage; and

V)  Damage in both tension and compression after initial compression damage.

As mentioned in Section 3.3, since the material damage due to the maximum
strains is determined in each reference direction, the damage development stage
proceeds independently in each reference direction.

In the elastic range, the stress-strain relation either in tension or in
compression follows the envelope curves under loading and unloading, and the
compressive strain is completely recovered under unloading, without permanent
strain.

If the tensile strain in a principal axis exceeds the tensile elastic limit, tension
cracking (or damage) occurs, and Stage I shifts to Stage II. At this stage, the tension
damage surface and the reference surface form in eight reference directions. Also, the
primary crack direction becomes fixed to the principal tensile axis. As the tensile
strains in rotating principal axes progress under further loading, the tension damage
surface continues to expand in the reference directions, and the principal stress axes
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deviate from the principal strain axes. The reference surface is determined in the
eight reference directions when the tension damage surface in each reference
direction exceeds the cracking strain. When unloading occurs, the equivalent uniaxial

stress-strain relations in the principal tensile axes follow the unloading curves

available stress-strain field
with further damage

I)  Elastic range without permanent damage

II) Initial tension damage without compression damage

III) Initial compression damage without tension damage

IV) Damage in both tension and compression after initial tension damage

V) Damage in both tension and compression after initial compression damage

Figure 3.14 Development of concrete damage
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connecting the tensile envelope curve at the maximum strain and the reference point
(which is the origin in Stage II), and the principal stress and strain axes coincide.
Under reversed loading in compression, the stress-strain relation follows the
compressive envelope curve. If the strain exceeds the elastic limit in compression,
this stage shifts to Stage IV.

At Stage 111, beyond the elastic limit in compression, the compression damage
surface forms uniformly in all directions. If unloading occurs, the stress-strain
relation follows the unloading curve connecting the compressive envelope curve at
the maximum strain and the permanent strain due to the current maximum strain.
Also, the reloading point or reloading surface follows the current strain. If reloading
occurs while the material is on the unloading path, the stress-strain relation follows
the transition curve connecting the reloading point on the unloading curve and the
unloading point on the reloading curve. Beyond the unloading point, the compressive
stress-strain relation follows the reloading curve. Simultaneously, the reloading
surface follows the compressive strain. Under reversed loading in tension, beyond
the permanent strain due to the current maximum strain in compression, the stress-
strain relation follows the tensile envelope curve. If the strain exceeds the elastic
limit, then the tension damage surface, the reference surface and the primary crack
direction are established, and the damage development Stage III shifts to Stage V.
The magnitude of the reference surface is set to the current permanent strain.

In Stages IV and V, both the compression and tension damage surface exist,
and the reference surface is permanently set. Between the damage surfaces or the
maximum strains, the stress-strain relation follows the unloading-reloading curves.
Beyond the maximum strains, it follows the envelope curves, and the damage

surfaces continue to expand.
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3.6 Stiffness Matrix

In the proposed cracked concrete model, the two-dimensional stress-strain
relation is defined by two equivalent uniaxial stress-strain curves in orthotropic axes
or principal stress axes. In most material models of concrete, concrete stress-strain
behavior is defined by an incremental stress-strain relation which depends on the
incremental inaterial stiffness. In the proposed cracked concrete model, the
equivalent uniaxial stress-strain curves are defined in terms of total stress and strain.
Accordingly, the two-dimensional stress-strain relation in equilibrium and
compatibility condition does not depend on the type of the material stiffness. The
material stiffness only helps to achieve overall equilibrium and compatibility in
nonlinear member behavior. Therefore, whatever type of material stiffness matrix is
used, the two-dimensional stress-strain relation under a given load condition should
be the same if the equilibrium and compatibility conditions are satisfied. However,
stability and speed of convergence in satisfying equilibrium and compatibility
conditions are critical in nonlinear computation, and they depend on the type of
material stiffness used. In this research, it is found that, although the material
behavior is defined by total stress-strain relation, an incremental stiffness formulation
has the advantage of fast convergence for the proposed cracked concrete model. For
that reason, the incremental stiffness matrix will be discussed here.

The incremental or tangent stiffness matrix is constructed in the current
principal stress axes or orthotropic axes, and consists of the derivatives of the
equivalent uniaxial stress-strain curves in two orthogonal principal axes and the shear
stiffness. Actually, shear stresses and strains do not exist in the principal axes.

However, the rotation of the principal axes induces shear stresses and strains from the
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current stress and strain combinations. The shear stresses and strains need to be
eliminated in new principal axes. The shear stiffness is devised for that purpose.

In Figure 3.15, if the current principal stress axes rotate by A8, from the
previous principal stress axes, the current shear stress is defined by the combination
of previous stress components, the current incremental stress components, and the

angle change. The current shear stress should vanish in the current principal stress

axes.

r= -%(0'1 + A0, - 0, — AG,)sin2A0,, + Atcos2A8, =0 . (3.5

Generally, the principal strain axes differ from the principal stress axes, and
the shear strain in the principal stress axes or orthotropic axes does not vanish.

However, the shear strain in the principal strain axes transformed from the principal

— { new axes
o, + Acg A6,

previous axes

<+ I
At |
o, + Ao,

Figure 3.15 Stress variation due to rotation of principal stress axes
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stress axes should be eliminated. If the current principal stress axes deviate from the

principal strain axes by 6,, the current shear strain in the principal strain axes is
defined by the combinations of the strains in the principal stress axes or orthotropic

axes. Also, the shear strain should vanish:

Y= -»%(el +A€, — &, - A€, )sin 2(6, + Aea)+%(y+Ay)cos2(e,, +A6,)=0.

3.7

If A8, is eliminated in Equations 3.6 and 3.7, then

—Af(-g-coszed + %sinZBd) +Aycos20, - Asin26,+ ycos26,=0, (3.8)
where A= (g +Ag —€,—Ag,) and B =%(0', +A0, - 0, —Ag,).

In this equation, since —Asin26, + ycos26, = 0, the relation between the shear

stress and strain increments is defined by

At Bcos26,
G=—= 4 , 3.9
Ay (Acos26,+ ysin26),) (39)

where G is the incremental shear stiffness. If the differences of the stress and strain

increments are very small compared with those of the total stresses and strains, then

A=(g -¢,),and B=%(o‘1 -0,).

If the principal strain axes coincide with the principal stress axes, then the

current shear strain, ¥, and the deviation of the principal stress and strain axes, 6,,
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should vanish in the principal axes. Accordingly, the shear stiffness, G, is simplified

as

_Ac_A_(0-0) (3.10)

The incremental shear stiffness of Equation 3.10 works effectively only if the
difference between the principal stresses and strains is much larger than the difference
between the principal stress or strain increments. Under complete unloading during
cyclic loading, the principal stresses and strains are small. It is therefore difficult to
achieve convergence. However, this shear stiffness is generally effective for fast
convergence.

Mathematically, this shear stiffness can be very large, very small, or negative.
Physically, the shear stiffness cannot be negative or very large. However, the shear
stiffness does not have a physical meaning, and it only plays a role of eliminating
shear stresses and strains in new principal axes.

Finally, in the orthotropic axes or principal stress axes, the incremental stress-

strain relation is

( 1 1 Ir )
Ao, ECRIE Ag,
OE, | 1
_____ ___l_j'._a_or_f____ —————
{1 Ag, p=[ 0 | =2} O J Ag, 3, (3.11.a)
] 38_2 ]
_____ el | Rt
At 010! G Ay
SR T R A R | B
or
s=D"-e, (3.11.b)
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where D™ is the material stiffness matrix and G is the shear modulus.

In fact, the equivalent uniaxial stress-strain relation is a function of the strains
not only in the current principal axis but also in the corresponding orthogonal axis.
Therefore, non-zero off-diagonal terms may exist in the stiffness matrix, and the
stiffness matrix then becomes unsymmetric. By using the symmetric stiffness matrix
(Equation 3.11) and the unsymmetric stiffness matrix, it is found that the
unsymmetric matrix has no advantage over the symmetric stiffness matrix for the

speed of convergence in numerical computation.
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40 REINFORCING STEEL AND BOND-SLIP MODELS

4.1 Reinforcing Steel Model

Reinforcement is idealized by either smeared or discrete elements.
Reinforcement that is uniformly distributed over a relatively large area compared with
the finite element size is idealized by two-dimensional smeared elements; otherwise,
it is idealized by discrete line elements. The stress-strain relation of reinforcing steel
is defined in terms of average stress and strain.

To idealize reinforcing steel behavior in this study, two constitutive models
are used: a bilinear model including a kinematic hardening rule; and a strain
hardening model including the Bauschinger effect. In the bilinear model, shown in
Figure 4.1, the stress-strain relations for unloading and reloading are bounded by the
upper and lower yield limits. Stiffness degradation due to cyclic loading is not
included.

The strain hardening model is that proposed by Brown and Jirsa [9]. The
stress-strain curve under monotonic loading, shown in Figure 4.2, consists of an
elastic part, a yield plateau, and a strain hardening region. The strain hardening curve

is that originally proposed by Burns and Seiss [9]:

- o 112(g, - €,,)+2 b &8 [Ou_ 4 (4.1)
e y 60(8:_8m)+2 £,7€4 \ O . , .

y
where € is the strain-hardening strain, and €, and o, are the ultimate strain and
stress respectively. From any stress-strain state, the allowable stress-strain path is
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Figure 4.1 Bilinear model including a kinematic hardening rule, used for steel

reinforcement
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Figure 4.2 Strain hardening model including the Bauschinger effect, used for steel

reinforcement (Brown and Jirsa [9])
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composed of loading, unloading, and reversed-loading curves. The loading and
reversed-loading curves consist of the transition curve representing the Bauschinger
effect and the strain hardening curve. The transition curve defines the stress-strain

relation between zero stress and yield stresses:

o, = o, [1 — exp [_2'95£‘J + 0'12,98’], 4.2)

s
sh e.rh

where € is an equivalent strain, and €, is the effective strain-hardening strain. The
equivalent strain and the effective strain hardening strain are defined by the residual

strains due to the previous loading history.

E, =¢,—¢,,,and 4.3)
’ £ h 81 - 82

g, = —=2 In| L= 4.4
* T 1.38 ( g, J (4.4)

where g, is the maximum or minimum strain, and €,, is the current residual strain.
In this research, the effective strain hardening strain is limited by ¢/, 20.3¢,,.
Beyond the yield stress, the stress-strain relation follows the strain hardening curve of

Equation 4.1, whose parameters are adjusted to the current stress-strain position.

112(,-€,)+2 . E-¢
(E-e)+2 | & - (ﬂ—uJ, 4.5)

. £
: 7| 60(E, - €,,)+2 £,~&, |0,
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where €, is equivalent to € at 0, = 0, and the effective steel strain is defined by
€; = € — &g * €y . The unloading curve is defined by the straight line connecting the

current stress-strain and the next residual strain, €, p*

g, = 0.8 (s:—szp) + €59 (4.6)

14

For smeared steel, the tangent stiffness D, is constructed by the tangent of the

stress-strain curve and the reinforcement ratio in the direction of the reinforcing steel.

] 60 [ '
Sl I S | M
]
1A, t=] 0 10 1 0 [{ag @)
————— '-——--'——---
Ar, 0 10 10 Ay,
. L ] ] . J

In the case of perfect bond, displacements of the reinforcement elements are
compatible with those of cracked concrete elements. Otherwise, reinforcement
elements are connected to the cracked concrete elements via bond-slip elements.

Here, it is worth while to note a shortcoming of the concept of smeared
cracking and smeared reinforcement, for idealizing the interaction between multiple
cracks and reinforcement.

Using the concept of smeared cracking and smeared reinforcement, the strain
of reinforcement is obtained by transforming the current strain combination to the
reinforcement direction. Accordingly, the reinforcement strain is not related to the
opening and closing of any specific crack. In other words, if the reinforcement layer

crossing the both cracks, the reinforcement strain when one crack opens and the other
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crack closes can be the same as that when the former crack closes and the latter
opens.

However, the reinforcement deformation is directly related to the opening
width of a specific crack. Even for one reinforcement layer, the behavior of the
reinforcement at a crack should be independent of that at the other crack. Current
concept of smeared cracking and smeared reinforcement cannot consider the
independent reinforcement behavior at each crack.

In usual planar members such as beams and shear walls under bending, shear,
and axial loads, the stress states across the members are very complex, and the overall
behavior depends on the stress-strain behavior of the flanges which are subjected to
uniaxial tension or compression. In this type of member, the cyclic stress-strain
behavior of the web which is a multiply cracked zone does not significantly affect the
overall behavior.

However, if the stress states across the members are uniform under cyclic
loading, the multiple cracks open and close simultaneously across the entire member,
and the overall member behavior depends on the cyclic history of the reinforcement at
each crack. Therefore, to precisely predict the member behavior with multiple cracks,
more research is required for the interaction between multiple cracks and
reinforcement so that the reinforcement behavior is related not to the reinforcement

direction but to each crack direction.
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4.2  Bond-Slip Model

Debonding phenomena of reinforcing steel are classified into pullout failure
and splitting failure. Pullout failure usually occurs in anchorage zones of
reinforcement in which the surrounding concrete is well confined. Splitting failure,
however, occurs along reinforcement. In a splitting failure, since debonding follows
spalling of the concrete cover due to splitting, bond failure occurs abruptly, and the
bond strength is much lower than that of pullout failure. Also, in cracked concrete,
the bond strength is lower than pullout failure strength. This is because the bond
strength near the crack surface is much lower than that in the uncracked region which
is well confined by surrounding concrete, and because the deterioration of the bond
strength due to cyclic loading is severe.

In this research, the bond-slip model is based on an existing pullout failure
model. For splitting failure and pullout failure in cracked concrete, the bond strength
and ductility are assumed to be much lower than those of normal pullout failure.

Eligehausen et al. [18] developed a cyclic bond-slip model for pullout failure.
The relation between bond stress, 7,, and relative displacement, s, is composed of an
envelope curve for slip in either direction, of unloading-reloading curves connecting
the envelope curves, and of a transition curve connecting the unloading and reloading
curves (Figure 4.3). The maximum strength of the envelope curve, 7,,, decreases
under fatigue damage due to cyclic loading. After cycles of loading, the bond-slip

relation follows the reduced envelope curve (Figure 4.4).
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Figure 4.4 General behavior of bond-slip model
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Eligehausen et al. suggest the following parameters for pullout failure:

85, = 1.0 mum
s, =3.0mm
53 =10.5 mm

7,, = 13.5 N/ mm?
Ty, =50 N/ mm?

In the analysis program developed here, the parameters will be chosen by
program users according to the predicted failure types and other conditions. ACI 318-
63 specifies the ultimate bond strength associated with splitting failure as less than

5.6 MPa (800 psi) [42].
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5.0 FINITE ELEMENT FORMULATION
51 Derivation of Structural Stiffness Matrix

The applied finite element formulation is derived by virtual work theory. The
derivation will be demonstrated for the 4-node rectangular finite element. In the
concept of virtual work, when a virtual or very small displacement is applied to a

system with an existing force field in equilibrium, the internal virtual work should

equal to the external virtual work.
OW, =0W,_,. (.1)

The internal virtual work is done by the existing internal stress and the internal virtual

strain due to the virtual displacement.

W, = [ (8c-0)av. (5.2)

The external virtual work is expressed by the existing external force and the virtual

displacement.

6w __=06U-P. (5.3)

ext

For a finite element, the displacement field within the element is defined by

the summation of weighted nodal displacements, expressed using polynomial

interpolation functions, f;, for each nodal displacement. The displacement at a

position in the element is defined by



Vi
u_f10f20f30f400
{v}_ [0 fL0 f, 0 £ 0 ﬂ]‘ [ G42)
U,
\V4J
u=NT.U. (5.4.b)

du
£x=-£, E, ==, Y=—+—0. (5.5)

From Equations 5.4.a and 5.5, the strains are redefined in a matrix form by the nodal

displacements:

[ 1 (U
9% %% (2} A ‘
£, ox 0 ox 0 ox 0 ox 0 Vl
er=|0 % 0 ‘—Z—y& 0 % 0 ‘;f; {2 tor  (5.6a)
Y o U ¥ 9 I ¥ I H||U
| dy ox dy odx dy ox dy ox|] V,)
e=B-U. (5.6.b)

The constitutive relation of stresses and strains is defined by
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s=D-e, (5.7

where D is the material stiffness matrix. The internal virtual work in Equation 5.3 is

redefined by the scalar product of the virtual strain and the stress vectors.

6W,, = [, (Be-0)av = [ (8" s)av. (5.8)

Hence, from Equation 5.5.b, the virtual strains due to the virtual displacements are

defined by
6 = B - 6U. (5.9)

Using compatibility and constitutive conditions in Equations 5.9 and 5.7 , the internal

virtual work in Equation 5.8 is redefined in terms of nodal displacements;

8W,, = [ (6"-s)av = | (8U"-B"-D-B-U)av
(5.10)
= &u™-([,(8"-D-B)av)-U

If the external virtual work in Equation 5.3 is defined by nodal displacements and

forces,

oW_, = 6U" - P. (5.11)
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In virtual work theory, the virtual internal work in Equation 5.10 should equal to the
virtual external work in Equation 5.11. Eliminating the virtual displacements in both

equations, the load-deformation relation is defined by

P=(f, (B"-D-B)av) - U,or (5.12.2)

P=k: U (5.12.b)

This gives the stiffness relation between the element forces and displacements.
For bond-slip elements, the internal virtual work is defined in terms of relative

displacement (or slip), u,, and the corresponding shear stress, 7,.

6W,, = [ (6u,-7,)dl=] (6u,"t,)dl. (5.13)

The external virtual work is expressed by the existing external force, P,, and the

virtual displacement, 6U, .

6W,_, =6U, -P, = 8U" - P,. (5.14)

ext r

Using the compatibility condition, u, =N, -U,_, and the constitutive equation,

t, =D, -u,, Equation 5.13 is redefined as

SW,, = [(8u,-7,)dl = 8UT ([ N,7-D,-N, ) U,. (5.15)
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Since the external virtual work in Equation 5.14 equals the internal virtual work in

Equation 5.15, the relation between element shear forces and the relative

displacements is
P, = ([ N, D, N, al) U, or (5.162)
P, =k, - U,. (5.16b)

A structural stiffness matrix is developed by assembling the corresponding
element stiffness at each degree of freedom. In material nonlinear analysis, a large
main memory is required for the information of the history of stress and strain as well
as the basic information about the member and the loading condition. Therefore, it is
important to manage main memory effectively. As an effective matrix solver, the

frontal method, which eliminates the stiffness element by element, is used.

5.2  Finite Element Types

Analytical load-deflection characteristics depend on modeling characteristics
such as the element types, the number of elements, and the number of gaussian points.
Accordingly, the model should be chosen carefully.

In the proposed model, 4- and 8-node rectangular elements are used as shown
in Figure 5.1. Based on comparison of the two elements in analysis, it is
recommended to use the 8-node rectangular element since its high order displacement

field assures smoother and more continuous structural behavior than the 4-node

element.



As shown in Equation 5.12, the element stiffness of concrete, k_, is
constructed by the integration of the material stiffness and the displacement field

matrices,

k. = [, (B’D.B)av (5.17)

For the integration, a 3x3 mesh of gaussian points is used for the 8-node element, and
a 2x2 mesh is used for the 4-node element. The smaller number of the gaussian
points is advantageous in saving main memory. However, underintegration can cause

divergence in iteration.
The 8-node and 4-node elements are also used for smeared reinforcement.

The material stiffness, k,, is defined by

k, = [ (B'DB)av . (5.18)

In the proposed model, the finite element formation is constructed using
isoparametric elements. However, since the smeared reinforcement is not likely to be
distributed non-uniformly, it is reasonable that the element shape is rectangular.

A total element stiffness matrix is made by the summation of the stiffness

matrices of concrete k, and reinforcement k, .

k =k, +k, (.19)
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Figure 5.1 Finite element combinations



For the discrete reinforcement model of Figure 5.1 (a), a 2-node truss element
and a 3-node line element are used. To satisfy compatibility at the boundary between
the line elements and the rectangular elements, the 2-node line element is used for the
4-node rectangular element, and the 3-node line element is used for the 8-node
rectangular element. In the 3-node line element, 3 gaussian points are used for
numerical integration.

As bond-slip elements, a 6-node rectangular element is used to connect the 3-
node line element and the 8-node rectangular element; and a 4-node rectangular
element is used to connect the 2-node line element and the 4-node rectangular
element (Figure 5.1 (b)). As shown in Figure 5.2, using compatibility and
equilibrium conditions, the 6-node element is condensed into a 3-node bond-slip line

element, and the 4-node element is condensed into a 2-node bond-slip line element.

P 1 U] P2 U2 P3 U3
—_—
P, U,
L
P,U, Fs Us FeUs U,=U;-U,,
6 condensation P.=P=-P
= fiT i+3
® & -9
P-ﬂ Url P-“ZUrZ P s3 U’ 3

Figure 5.2 Bond-slip element
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6.0 SOLUTION TECHNIQUE

6.1 General

Under general loading, a reinforced concrete member repeatedly experiences
crack opening and closing, reinforcing steel yielding, and concrete crushing. Under
these conditions, member behavior becomes highly nonlinear. During the analysis of
the member, convergence may not be accomplished at a certain load level, called the
critical load. Such a convergence problem can occur at the maximum load capacity
of the analyzed member, or it can simply be a numerical difficulty. If there are no
experimental data to verify the analysis results, one cannot tell whether or not the
critical load corresponding to the convergence problem is actually the maximum load
capacity of the member.

Previous researchers [33, 38] using the orthotropic axes approach with the
equivalent uniaxial stress-strain curves report that a critical load is detected in the
analysis of beam tests [8], as shown in Figure 7.11. At the critical load, numerical
difficulty is detected, and the load-deflection curve is discontinuous. By extensive
computer and programming work, it is found that the critical load or the discontinuity
can occur depending on various conditions, such as the type of the tension stiffening
model, the size of loading step, the target tolerance, and the finite element mesh.
Also, it is found that the critical load can occur at any load level lower than the
maximum load capacity of the analyzed member.

Therefore, to achieve the ultimate strength and ductility of the member, one

needs a reliable numerical scheme to provide complete member behavior up to the

target displacement.
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6.2  Displacement Control Method

The displacement control method presented here successfully follows member
behavior up to any target displacement, so that the ultimate strength and ductility of
the member can be predicted. At a critical load, numerical difficulty is sometimes
detected. However, in the displacement control method, numerical failure can be

avoided by using an appropriate iteration scheme the detail of which are presented in

Section 6.4.
A general method and a simplified method of displacement control given by

Ramm [30] will now be introduced.
In the ith iteration, the tangent formulations of the load-deflection relation is

rearranged so that the prescribed displacement, AU, = AU®, is separated from the

other displacement components.
Ki‘ Ki’ AU, v AR‘ . (6.1)
K, K,||AU, P, AR,

where the force vector consists of the applied incremental force vector, P, and the

residual force vector, AR.

If the known variables are moved to the right hand side,
K, -P;||AA AR, K,

The first equilibrium equation in Equation 6.2 is
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K eAU; = AZ P} + AR] - K, AU, . (6.3)

In the equation, the displacement vector AU; can be divided into two parts: (AU; )I

for the applied force; and (AU{ )n for the residual force.
AU; = A% - (AUE) +(aU:)". (6.4)

The relations between the separated displacement vectors and the force vectors are

Ki, o(AUI) =P, (6.5)
and
Ki,*(AUi)" = AR} - Ki, - AU, (6.6)

Using the displacement vectors, the incremental parameter of the applied force vector

is solved in the second equilibrium equation of Equation 6.2:

_ AR +Ki, ¢(AU)" + K}, - AU,

- - 6.7)
P; - Ki, o(AUY)

AN

The total displacement increment and the total force increment are obtained by

AU =3 [ax-(av) +(av)’]

and (6.8)
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AP =Y [a4-P) (6.9)

The total displacement and force vectors in each loading step are obtained by

U/= U+ AU 6.10)
and
P/ = P 4+ AP. (6.11)

This general method can be simplified by removing the process of stiffness

modification. Instead of the modified stiffness K}, , K’ is used in Equations 6.5 and

6.6:
K o(AU) = P* (6.12)
and
K o(AUi)"= AR, (6.13)

where the prescribed displacement term is also removed.

Again, the incremental displacement vector is defined by the two

displacement vectors obtained in Equations 6.12 and 6.13.

AU = AX-(aU°) + (aUi). (6.14)
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Of the incremental displacement vector components, the controlled incremental

displacement should be the prescribed value:

AU; = AX-(aUS) + (AUE) = AU™. (6.15)

In the first iteration, the incremental load parameter is obtained from Equation 6.15:

AU™ - (AUL)"
A = — 2 6.16
(aU3) (616

After the first iteration, further incremental displacement is eliminated so that the total

incremental displacement is equivalent to the prescribed value:

. (avi)"
AV = — >2). 6.17
—"r( AU (122) (6.17)

As shown before, since it eliminates the modification of the stiffness matrix,
the simplified displacement control method can save main memory.

By comparing the two displacement control methods, it is found that the two
methods produce the identical convergence rate, and that the simplified method is

more efficient for computer memory and running time.
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6.3  Iteration Strategy

In analyzing a reinforced concrete structure, the choice of solution strategy is
one of the most important factors determining the practicality of a analysis method.
Since the material behavior of concrete is highly nonlinear, it is very difficult to
ensure that the applied iteration scheme always converges in a stable manner. The
convergence speed is also important. Generally, as much study is required to select
the iteration scheme, as the material model. Stability and speed of convergence
depend on the applied material modeling and the assumptions on which the material
model is based. Convergence is also sensitive to the solution technique and the
tolerance limnit.

In the analysis program developed here, tangent stiffness is used for
incremental displacement stepping. The tangent stiffness is composed of the slope of
each equivalent uniaxial stress-strain curves and shear stiffness as shown in Equation

3.11. For this tangent stiffness, numerical difficulty frequently occurs in the

following situations.

1) In softening material, where the slope of stress-strain relation in loading
(increase of strain) is opposite to that in unloading (decrease of strain).
Either stiffness in the direction of a incremental strain cannot follow the
stress increment in the other incremental strain.

2) When a structural load capacity suddenly decreases, or when the load
transfer mechanism suddenly changes, loading and unloading (increase and

decrease of strain) occur across the entire structure.
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3)

Near zero stresses or strains, principal directions change significantly even
with small incremental strains. The proposed cracked concrete model is
very sensitive to the orientation of principal axes. However, the shear
stiffness, which make the principal stress and strain axes coincide, is not

measured accurately with small stresses and strains.

To prevent numerical difficulties associated with the above, the following

guidelines are recommended for stable and fast convergence:

1)

2)

3

The Modified Newton-Raphson Method does not always produce
convergence in each loading step. In softening material, the current
equilibrium position does not always lie near the tangent stiffness at the
previous equilibrium position. As a result, the initial tangent stiffness or once-
modified tangent stiffness sometimes fails to converge. Therefore, the tangent

stiffness should be modified in every iteration.

A very small stiffness element or a negative stiffness element can cause
divergence. To avoid such problems, it is recommended that individual
diagonal elements not be less than E/1000 in value [31], where E is the elastic

modulus of concrete .

Convergence is sometimes difficult even when the strategies in 1) and 2) are
used. Use of the initial elastic stiffness matrix is found to give the most stable
convergence [31]. The elastic stiffness is the largest possible stiffness, and is
constant regardless of axis orientation. Therefore, in most iterations,
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4)

convergence can be accomplished monotonically using the elastic stiffness.
However, such convergence requires a considerable number of iteration. The
initial elastic stiffness is therefore used only when convergence is not
accomplished by the tangent stiffness. After convergence is accomplished,

the iteration scheme is switched back to the tangent stiffness method.

As a tolerance limit, an incremental displacement criterion is applied:

AU o AU*
AU e AU (6.18)

Tol =
where AU is the vector of the total displacement increment in current
loading step and AU’ is the vector of the displacement increment in ith
iteration. This criterion provides an indirect measure of the incremental force
tolerance. Generally, it allows more residual forces than does the incremental
force criterion with a given tolerance limit. The incremental displacement
criterion is suitable for both monotonic and cyclic loads. Though a stricter
tolerance limit gives a more exact representation of the true load-deflection
curve, as the tolerance limit, acceptable accuracy and faster convergence are

obtained with displacement tolerance limit of 1%.
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7.0 VERIFICATION OF MATERIAL MODEL

7.1 General

In this chapter, the proposed material model will be verified by analyzing
structural members under monotonic and cyclic load conditions. The behavior of
structural members which exhibit flexure-dominated behavior can be analyzed by
various methods, assuming either uniaxial stress-strain relations or crack directions
across the member section. To verify the effectiveness of the proposed method of
analysis, the structural members analyzed herein exhibit not only flexure-dominated

behavior but also shear-dominated behavior, for which more general analysis methods

are required.
7.2 Shear Panel Tests (Vecchio and Bhide)

Two series of shear panels were tested at The University of Toronto in the early
1980's. The shear panels were tested under in-plane loading: Series PV panels, tested
by Vecchio [38], were primarily subjected to uniform shear; Series PB panels, tested
by Bhide [7], were subjected to uniaxial tension and shear. The stress and strain states
across a tested panel were intended to be uniform, so that the test data would give a
basis for developing the smeared stress-strain relation of cracked concrete.

Table 7.1 and Figure 7.1 show the dimensions and the material properties of the
shear panels analyzed herein. Most test panels are anisotropically reinforced by steel
layers so that the variation of the principal stress-strain relation can be observed in
rotating principal axes. For the analytical model, one 4-node element, shown in Figure
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7.1, is used. Since the stress-strain states are uniform across the panels, one element is
sufficient to estimate the stress-strain relations induced by the applied loads.

The analyses are compared with the test results in Figures 7.2 - 7.9. They are
also compared with the analyses of Vecchio (Series PV) in Figures 7.2 - 7.5 and
Stevens (Series PB) in Figures 7.8 and 7.9. The figures show the relations of principal
compressive stress versus principal compressive strain, principal tensile stress versus
principal tensile strain, maximum shear stress versus maximum shear strain, and the
orientations of principal stress and strain axes versus maximum shear strain.

Before comparing the analysis results and the experiments, the concept of the

proposed material model for monotonic loading will be restated here:

1)  Orthotropic axes rotate to current principal axes.

2)  In the principal compressive axis, the compressive strength is reduced by the
corresponding principal tensile strain which represents crack opening.

3)  Aslong as at least one reinforcement layer remains elastic, cracked concrete
has considerable tension stiffening stresses in the current principal tensile

axis. Once the reinforcement exceeds the yield strain, the tension stiffening

stresses disappear.

As shown in Figure 7.2, since PV4 is isotropically reinforced, and since the
reinforcement is symmetric with respect to the principal axes, the principal axes do not
rotate during loading; the two reinforcement layers reach the yield stresses
simultaneously so that the tension stiffening stress disappears quickly. The shear

stress-strain curve is trilinear, the key points of which are defined by cracking and the
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yielding of the two reinforcing steel layers. The shear stress of concrete reaches its
maximum capacity when the reinforcement layers yield.

On the other hand, shear panels PV10 and PV12 are anisotropically reinforced.
If one reinforcement layer yields after cracking, the principal axes rotate to the direction
of the other reinforcement layer which remains elastic. The shear stress-strain curves
are trilinear, the key points of which are defined by cracking and the yielding of one
reinforcing steel layer. In the singly reinforced shear panels PV13, PB16, PB19,
PB21, and PB22, once tensile cracking occurs, the principal axes rotate to the direction
of the reinforcement layer. The shear stress-strain curves are bilinear, which is defined
by tensile cracking.

In the anisotropically or singly reinforced shear panels, it is observed that
considerable tension stiffening stresses are maintained even at large tensile strain. This
is because at least one reinforcing steel layer remains elastic. However, even with the
considerable tension stiffening stresses, the increase of the shear stress of concrete is
not conspicuous because the compressive stresses do not increase much due to crack
opening (compression softening due to crack opening).

By comparing PV 4 in Figure 7.2 and the other experimental results in Figures
7.3-17.9, itis obvious that if a reinforcement layer remain elastic, cracked concrete has
considerable tension stiffening stresses. The proposed tension stiffening model
idealizes this phenomenon appropriately. The analytical results show good agreement
with Series PV, PB 21, and PB22, but some discrepancy is shown in Series PB16 and
PB 19. However, as shown in Figures 7.6 and 7.7, the principal stress and strain axes
deviate from each other by about 10 degrees, even before cracking. By investigating
the test results, it is found that since the shear panels of Series PB are subjected to
uniaxial tension and shear forces, the stress distribution across the section of the shear
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panels is not assured to be uniform as expected. As a result, tensile cracking occurs
locally even before the average principal stress reaches the tensile cracking stress.

As shown in the figures, the Vecchio and Stevens' models generally give
reasonable results. In Series PV, Vecchio's model and the proposed model show close
predictions for the tests. In Series PB 21 and PB 22, the proposed model provides
better prediction than Stevens' model. Also, it is noted that the assumption that
principal stress axes coincide with principal strain axes gives more rigidity to the shear
panels than actual stress-strain relations in principal axes deviated from each other. As

a result, the analyses slightly overestimate the actual shear stress-strain relations at large

strains.
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Table 7.1 Loading conditions and material properties of shear panels

Panel | Loading Concrete Reinforcing  steel
oi0,v, | f g, Sa S Por Psy
(MPa) (%) (MPa) (MP2) (%) (%)
PV 4 0:0:1 26.6 0.25 242 242 1.056 1.056
PV 10} 0:0:1 14.5 0.27 276 276 1.785 0.99
PV 12| 0:0:1 16.0 0.25 469 269 1.785 0.446
PV 13] 0:0:1 18.2 0.27 248 0.0 1.785 0.0
PB 161196:0:1 41.7 0.3225 502 0.0 2.023 0.0
PB 19]1.01:0:1 20 0.1913 402 0.0 2.195 0.0
PB 21{3.1:0:1 21.8 0.18 402 0.0 2.195 0.0
PB 22]16.1:0:1 17.6 0.203 433 0.0 2.195 0.0

¥ by
iy ———
" i >0 *—>
o | i :
<+ |§::::'::::: —>
lé::.......:: v, y L >
- x T 2%
P
Dimension : 890x 890 x 70 (mm) Analytical model

4 node rectagular element

Figure 7.1 Shear panels tested at The University of Toronto [7, 38]

80




compressive stress (MPa)
&
[l

3
— author's anal. — author's anal
B Vecchio exp. B Vecchio exp.
——— Vecchio anal. —— Vecchio anal
w
a2 +
3
" ] A
|4
»
2
24
2
]
" . .
——————— 0 - ’ ‘
-1 -2 .3 54 -5 0 4 8 a'2 16
compressive strain (x10 ") tensile strain (x10 )
-90

shear stress (MPa)
n
1

yielding of two reinforcing
steel layers

— author's anal.
B Vecchio exp.
—— Vecchio anal.

[ 1 I

[}

o

o
L
T

orientaions of principal axes (degree)
w
[~}

B exp. principal strain
O exp. principal stress
—— author's analy. principal axes

| " —

- -10 715
shear strain (x10 )

] L 1 1

L] 1 L] ]

-4 -8 -12 -16 -20
shear strain (x10°%)

Figure 7.2 Comparison of analytical predictions and test results
for Shear Panel PV4 (Vecchio [38])

81



compressive stress (MPa)

shear stress (MPa)

-5 -
— author's anal.
®  Vecchio exp.
-— Vecchio anal.
0 1 l ) 1 J
I 1 ’ L T
-1 -2 -3 -43 -5
compressive strain (x10 )
6
yielding of one reinforcing
steel layer
[]
3+
]
— author's anal.
B Vecchio exp.
—— Vecchio anal.
0 [ [ l L
] L |l T
5 20

10 15
shear strain (x107)

tensile stress (MPa)

orientaions of principal axes (degree)

-
L

-90 A

—— author’s ana!.
& Vecchio exp.
n —— Vecchio anal.

|
Ll

0 4 8 12 16
tensile strain (x10 )

-60 +
[ ]
]
n
- <
Bt o o
[ ]
-30 + ® exp. principal strain
<O exp. principal stress
—— author’s analy. principal axes
0 1 1 [ [ 1
L) T ¥ ) L
0 5 10 16 20
shear strain (x10 ")

Figure 7.3 Comparison of analytical predictions and test results
for Shear Panel PV 10 (Vecchio [38])

82



-10 +

compressive stress (MPa)

shear stress (MPa)

'

o
]
1

~—— author's anal.
B Vecchio exp.
~—— Vecchio anal.

Il [] [

T ] 4 =
-1 -2 -3 =43
compressive strain (x10 )

-3 -+

yielding of one reinforcing
steel layer

—— author's anal.
B8 Vecchio exp.
—— Vecchio anal.

bl }

-5 -10 :35
shear strain (x10 ")

orientaions of principal axes (degree)

tensile stress (MPa)

— author's anal.
B Vecchio exp.
—— Vecchio anal.

B
0 ! 1 . )
1 ] 1 T
0 4 8 2 16
tensile strain (x10 ")
90 F
]
-60 4 -
R 8  exp. principal strain
-30 A e
O exp. principal stress
— author's analy. principal axes
0 T '} L 1 )
T ) 1

[~ =)

-5 10 -15 20
shear strain (x10™°)

Figure 7.4 Comparison of analytical predictions and test results
for Shear Panel PV12 (Vecchio [38))



10 2 F

shear stress (MPa)

compressive stress (MPa)
&
b
1
tensile stress (MPa)
L
[ §

«—— author's anal.
®  Vecchio exp.
] —— Vecchio anal.

~—— author's anal.
B Vecchio exp.
—— Vecchio anal.

0 L 1 1 1
1 i ]

L}
0 -1 -2 -3 0 -5 3
compressive strain (x10 ") tensile strain (x10 ™)

k-3
[
©
o

L

——— author's anal.

; W Vecchio exp.

—— Vecchio anal.
60 4+

n
1
T
L]

® exp. principal strain
© exp. principal stress
—— author’s analy. principal axes

orientaions of principal axes (degree)
e
1
T

0 1 L L 1 o4 1 1 1 i
T 1 T =T T T T T T

0 5 10 15 20 0 4 8 12 16 20
shear strain (x10 ")

-4

shear strain (x10°°)

Figure 7.5 Comparison of analytical predictions and test results
for Shear Panel PV13 (Vecchio [38))

84



10

shear stress (MPa)

— author's anal.

shear strain (x10'3 )

| Bhide exp. — author's anal.
B Bhide exp.
w
o P
©
2 &2 -
2 -3
o
@ »
@54 8
3 @
7] [+
a 511
13 2
<}
133
0 1 L L 2 1 o 1 1 L
1 T T L ¥ I 1 | T
0 -1 -2 -3 54 -5 0 4 8 _31 2 16
compressive strain (x10 ) tensile strain (x107)
4 4 90
—— author's anal. §
®  Bhide exp. =
&
koA
3
660 -
=
a
2 2
k=
a !I
] -
5]
80 + . .
@ 8 exp. principa! strain
o ® exp. principal stress
g ~—— author's analy. principal axes
o
e
S
0 i I i 1 0 1 i 1 1 1
T L T ) L] ¥ T T Ll T
0 5 10 15 20 0 4 8 12 16 20

shear strain (x10"°)

Figure 7.6 Comparison of analytical predictions and test results
for Shear Panel PB16 (Bhide [7])

85



compressive stress (MPa)

shear stress (MPa)

-6 F

— author's anal.

— author's anal.
[ ] 8 Bhide exp.

N
L

-
l

B Bhide exp.
w
o
3
»
(73
1 -
]
2
‘8
c
e
0 1 [ 1 i
[ L L (] ) ] 1) L]
) J . ) 0 4 8 12 16
-1 -2 -3 -4 -5 . . -3
N ] -3 nsil rain (x1
compressive strain (x10 ") tensile strain (x10™)
90 +
—— author's anal. -
= Bhide exp. g
&
=
3
% 60
®
a
S
c i
€
=%
© 30 4 o ‘
0 B exp. principal strain
s © exp. principal stress
I —— author's analy. principal axes
5
s
<]
} : = } 0 Jﬁ 1 1 ) 1 !
1) 1] T ¥ 1 L}

5 10 315
shear strain (x10°)

20

0 4 8 12

3 16
shear strain (x10 ™)

Figure 7.7 Comparison of analytical predictions and test results
for Shear Panel PB19 (Bhide [7])

86

20



3 2+
«=— analysis [} —— analysis
®  experiment & experiment
—— Stevens — Stevens
—_ = "
c24+ a
b 2 -
]
] a
8 £1 1
] w |
5 3
817 5
(o] 1 1 1 0o 1 1 1 L
) 1) T 1 ) ¥ T L) |
[+] 5 10 .3 185 20 [} 4 8 _31 2 16
shear strain (x10 ) tensile strain (x10 ")

Figure 8.8 Comparison of analytical predictions and shear panel tests
for shear panel PB21 (Bhide [7])

2 4 2

—— author’s anal. —— author's anal.
u  Bhide exp. L B Bhide exp.
— Stevens analy. L] — Stevens analy.

shear stress (MPa)
1

tensile stress (MPa)
1

0 I 1 1 I 0 -&
1 T T 1 1

o 5 10 215 20 0
shear strain (x10 ")

B g

o -
=
-

412 16
ensile strain (x10 ")

—

Figure 7.9 Comparison of analytical predictions and test results
for Shear Panel PB22 (Bhide [7])

87



7.3  Reinforced Concrete Beam Tests under Monotonic Loading

(Bresler and Scordelis)

Bresler and Scordelis [8] investigated the shear capacity of a series of beam
specimens. Their Beams A-1 and A-2 are analyzed here. Span-to-depth ratios are 7.0
for Beam A-1 and 10.0 for Beam A-2, typical of shallow beams. However, these
beams have heavy longitudinal reinforcement at the bottom, so that inelastic flexural
deformation due to yielding of reinforcing steel is prevented. On the other hand, the
reinforcement ratio of the vertical bars is low, inviting a shear failure due to diagonal
tension cracking.

Due to symmetry, these beams are idealized by an equivalent half-beam, due to
symmetry. As shown in Figure 7.10, the half-beam model is composed of twenty 8-
node rectangular elements and ten 3-node line elements. The horizontal bars at the
bottom and the top of the beam are idealized by discrete line elements. The vertical bars
are assumed uniformly distributed, and are idealized by rectangular elements for
smeared reinforcement. The analysis was performed by the displacement control
method, and a 1-percent displacement tolerance was used for the convergence criterion.
The influence of the main bars in the bottom of the beam is included in the tension
stiffening effect in the web of the beam.

By comparing the analytical and the experiments results, shown in Figure 7.11,

the following observations are made:

1) The analytical results using the proposed approach are close to the
experiments. The results clearly show that lack of shear capacity causes
brittle member failure without much ductility.
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2)  The load capacity of the beam falls between the flexural and the shear load
capacity values calculated according to ACI 318-89 [41]. The ACI code

underestimates the actual shear capacity of the beam.

Figure 7.12 presents the variation of principal tensile axes in which principal
tensile strain exceeds the cracking strain. The principal tensile axes represent primary
crack directions. In the figure, it is noticed that tensile cracks spread from the beam
web to the compressive region in the top of the beam section, and that tensile cracks
suddenly increase when the brittle failure occurs.

By investigating the computational stress-strain relations throughout the beam,

the failure mechanism of Beam A-1 is interpreted as shown in Figure 7.12:

Fig. 7.12 (a) The deformation of the beam is dominated by diagonal tension cracks in
the beam web. Flexural cracking in the bottom of the beam is resisted
by large longitudinal bottom bars, which remain elastic.

Fig. 7.12 (b) Due to lack of shear reinforcement, the diagonal tension cracks widen
and spread over the compression zone of the beam. As the result, the
effective compression area available to resist the existing load capacity is
reduced, and concrete crushing occurs.

Fig. 7.12 (c) Finally, the load capacity of the beam maintained by bending action is
no longer effective due to the large crack opening, and the load capacity

decreases abruptly.

According to the analysis, the sudden decrease of the load capacity is caused by
change of the load transfer mechanism of the beam. As the cracks spread over the
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entire cross section, the bending action of the beam is no longer effective. Instead, as
the cracks spread from the bottom to the top of the beam, the deformation of the beam
depends on the crack widths. At the displacement of the maximum load capacity, the
load capacity due to the crack or shear deformation is much lower than that due to
bending action. Accordingly, the load-deflection curve become discontinuous.

The reduced load capacity after brittle failure is maintained by the vertical
reinforcing steel across the cracks. In fact, the load capacity of the reinforcing steel
bars at large crack opening is meaningless, because the reinforcing steel cannot retain
its capacity without bond to concrete.

As shown in Figure 7.11, the load-deflection curve is discontinuous at the
brittle failure, and any other continuous load-deflection path is not found to connect the
maximum load capacity and the reduced load capacity. According to this analytical
research about solution technique, when an arc-length method is used with monotonic
stress-strain relations of materials, a continuous load-deflection path, like snap-back
phenomenon in geometry nonlinear problem, can be found. The monotonic stress-
strain relations restrict the member behavior or the load-deflection path. Just after the
maximum load capacity, the load-deflection curve is on an unloading path with decrease
of displacement, and regains then equilibrium positions with increase of displacement.
This is because the load-deflection curve cannot go on the unloading path due to the
restriction of the monotonic stress-strain laws. If cyclic constitutive laws are used with
the arc-length method, the load-deflection curve continues to be on an unloading path
with decrease of displacement after the maximum load capacity, because the cyclic
material laws allow equilibrium on the unloading path. As a result, the equilibrium

position with increase of displacement cannot be found. Therefore, to accomplish
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complete behavior up to a target displacement, the displacement control method is used
in these analyses.

Comparing Figure 7.12 (c) and Figure 7.13, the crack pattern represented by
the orientations of the principal axes are very similar to the widely used strut-tie model.
However, different from the strut-tie model, which is defined in a force-displacement
field, the rotating orthotropic axes model can consider the nature of the interaction
between cracked concrete and reinforcing steel, such as tension stiffening and
compression softening due to crack opening. Also, the rotating orthotropic axes
model, which can adjust the directions of strut-tie to current principal axes, can be used
for cyclic behavior.

During computation of the response of these members, the following

observations are made:

1)  The predictions of several researchers [34, 37] are almost the same as in the
author’s analysis. The only difference is that their predictions stop at the
maximum load capacity, while the author's analysis clearly shows the sudden
decrease of load capacity.

2) The compression softening effect does not significantly influence member
behavior because the compressive stress and strain in the web are small.
Except for deep beams with small shear span, compression softening does not
significantly affect member behavior.

3) The maximum load capacity of a shear-dominated member is affected by the
characteristics of the tension stiffening model. It is obvious that using the

tension stiffening model for direct tension underestimates the load capacity of
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the beams. Accordingly, the tension stiffening model considering the
variation of two-dimensional stress-strain states should be used.

4)  For the tension stiffening stress in the web of the beam, the influence of the
main bar in the bottom of the beam should be considered. Otherwise, the
analysis underestimates the actual load capacity. The diagonal crack width in
the web is directly affected by the deformation of the main reinforcement in
the bottom of the beam.

5) In this analysis, it is sometimes difficult to achieve convergence when there is
a sudden decrease in the load capacity. However, as shown in Figure 7.11,
such numerical problems do not affect the overall load-deflection history of

the beams. In the next loading step, convergence can be accomplished.

To investigate the effect of bond-slip relations on beam members, Beam A-1 is
idealized in two different discretizations shown in Figure 7.14. Discretization 1 is that
used by Stevens [33]. Two of the four bottom reinforcing steel bars are cut off at 12
inches (30.5 cm) from the supports. The parameters for the bond-slip model are
shown in Figure 7.14. In Discretization 2, all of the bottom reinforcing steel bars are
cut off at 12 inches (30.5 cm) from the supports.

The comparison between the analyses of Stevens and of the author for
Discretization 1 is given in Figure 7.15 (a). Since the two analyses adopt the same
bond-slip model given by Eligehausen [18], and since both use the same bond-slip
parameters, the predictions are expected to be the same. However, the ultimate strength
predicted by Stevens' model is about 75 kips, only two-thirds of the strength found in
the original experiment. On the other hand, the ultimate strength predicted by using the
proposed model is only slightly lower than that of the original experiment.
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In Figure 7.15 (b), the results of Discretizations 1 and 2 analyzed by the
proposed model are compared. The ultimate strength of Discretization 2 is much lower
than that of Discretization 1, and is almost the same as Stevens' analysis for
Discretization 1. This analysis shows that the development length of the bottom steel
bars is insufficient.

As shown the above analysis examples, the proposed model can precisely
predict shear failure under monotonic loading without numerical difficulties. It can also
predict bond failure of discrete reinforcing bars if the bond strength can be accurately

estimated, and it can predict the impact of that bond failure on member behavior.
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P/‘Z*

Analytical half-beam model
Figure 7.10 Reinforced concrete beam tested by Bresler and Scordelis [8]
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Figure 7.11 Comparison between analysis and experiment of reinforced
concrete beam (Bresler and Scordelis [8])
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Figure 7.14 Discretization of Beam A-1 for bond-slip behavior
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7.4  Reinforced Concrete Beam Tests under Reversed Cyclic Loading

(Brown and Jirsa)

Brown and Jirsa [9] performed a series of beam tests to determine the effect of
cyclic load history on the strength, ductility, and mode of failure of beams. Here, two
of their test beams are selected for analysis, representing the two types of cyclic
behavior of the test beams: flexure-dominated and shear-dominated behaviors. As
shown in Figure 7.16, each beam has two cross sections: they measure 6 x 12 inches at
the free end, and 10 x 12 inches at the fixed support. These beams, designated as
Beam 88-34-RV5-30 and Beam 66-35-RV10-60, have 30- and 60-inch shear spans,
respectively. Their material properties are shown in Figure 7.16.

The beams are idealized using two discretizations. Mesh 1, shown in Figure
7.17 (a), idealizes the actual dimensions of the entire structure, including the two cross
sections. Mesh 2, shown in Figure 7.17 (b), simplifies the actual beam by assuming
the 6 x 12 beam has a fixed support at the interface between the 6 x 12 and the 10 x 18
sections. The main bars at top and bottom are modeled as discrete elements. The
vertical reinforcement is treated as a smeared steel layer.

The analytical prediction of Mesh 2 using the equivalent reinforcement are
compared with the test results in Figures 7.18 and 7.19 for Beam 88-34-RV5-30 and
in Figures 7.20 and 7.21 for Beam 66-35-RV10-60. The following observations are
made by comparing the load-displacement curves from the analyses and the
experiments.

Beam 66-35-RV10-60 shows flexure-dominated behavior, and the load-

displacement relations after the second half-cycle are very close to the cyclic

98



characteristics of the reinforcing steel (Bauschinger effect). On the other hand, Beam
88-34-RV5-30 shows pinching during reversed cycles.

According to Ref. 9, the characteristics of cyclic behavior are influenced
primarily by shear effects, and the third half-cycle of behavior significantly affects the
subsequent cyclic behavior. The behavior of Beam 88-34-RV5-30, with a short shear
span, is strongly influenced by shear forces and the corresponding web deformations.
During unloading and reloading, the web cracks open and close suddenly. As a result,
the member behavior shows pinching.

On the other hand, the behavior of Beam 66-35-RV10-60, with a larger shear
span, is affected by bending rather than shear action. The web cracks remain narrow
during the loading history, and do not affect member behavior. As a result, the
member behavior is affected by the cyclic characteristics of horizontal reinforcing steel
bars in the top and bottom of the beam section.

As shown in Figures 7.18 and 7.20, it is very difficult to predict the exact
behavior of the specimen, because after several load reversals, bond-slip, concrete
spalling, and early contact of crack surfaces significantly affect behavior. However,
the general characteristics of the cyclic behavior can be predicted analytically up to the
third half-cycle of the behavior.

The analyses after the second half-cycle underestimate the test capacities. This
is because the cyclic stress-strain relation of reinforcing steel, proposed by Brown and
Jirsa [9] underestimates the actual one, and because early contact of crack surfaces,
inducing compressive stresses before complete crack closing, is not idealized in the
proposed cracked concrete model.

In Figure 7.22, the load-deflection curve of Mesh 1 is compared with that of
Mesh 2 for Beam 88-34-RV5-30. In the first load cycle, the member behavior of Mesh
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2 is stiffer than that of Mesh 1, while after the first cycle, the member behavior of Mesh
2 is more flexible. The analysis results using Mesh 1 are closer to the test results.

This indicates that the member behavior is very sensitive to idealized boundary
conditions, and that the analysis models should be close to the actual structures.
Clearly, the fixed support condition in Mesh 2 provides stiffer boundary conditions
than those of the actual specimens. Also, it is observed that the discrepancy between
the two meshes for Beam 66-35-RV10-60 is much larger than that for Beam 88-34-
RV5-30. According to Ref. 9, the plastic hinge zone that developed during cyclic
loading was concentrated at the fixed end. The beam deformation depends on the hinge
rotation which occurs within one-half of the effective depth (10 inches). Therefore, the
member behavior of Beam 66-35-RV10-60 is more sensitive to the boundary

conditions.

100



A
—»B r> p

-

0 2222

__..’B
30in
10 in
g
z
Section B-B Section A-A
88-34-RV5-30 66-35-RV10-60
L=30in L=60in
Top bars:2-#8 Top bars:2-#6
Bottom bars:2-#8 Bottom bars:2-#6
Stirrups : #3 @ 4 in Stirrups : #3 @S in

Figure 7.16 Cantilever beam tested by Brown and Jirsa [9]

101



222227

30in

(a) Mesh 1

6 in

(b) Mesh 2

Figure 7.17 Member discretization of cantilever beam

tested by Brown and Jirsa [8]

102



30

20

10+

Test results
by Brown et al.

load (KIPS)
=

-10 4

.20+

L 1

1 T ] L§

-2 -1 0 1 2 3
deflection at the end of beam (in)

30

201

10 4+

Author's analysis

load (KIPS)
o

-10 -

-20 4

1 L] | :
-2 -1 0 1 2 3
displacement at the end of beam (in)

Figure 7.18 Load-deflection relations at the end of beam

for Beam 88-34-RV5-30 (Brown and Jirsa [9])

103



30

201

101

—&o— Brown exp.

— Author's anal.

load (KIPS)
o

104

.20 +

-30

Figure 7.19 Comparison between analysis and test up to the second cycle

0

1 2

deflection at the end of beam (in)

for Beam 88-34-RV5-30 (Brown and Jirsa [9])

104




10

Test results
by Brown et al.

load (KIPS)
(=]

j=
7

1
-10 } } } } } i
-8 -6 -4 -2 0 2 4 6 8
deflection at the end of beam (in)
10
Author’s analysis
5 ——
)
o
=
b=}
as
k=]
-5+
-10 ——t—t : : :
-8 -6 -4 -2 0 2 4 6 8
deflection at the end of beam (in)

Figure 7.20 Load-deflection relations at the end of beam
for Beam 66-35-RV10-60 (Brown and Jirsa [9])

105



10

—&— Brown exp. 1
—— Author's anal.

load (KIPS)
\\.\

-10 } t } { }
-8 -6 -4 -2 0 2 4 6 8

deflection at the end of beam (in)

Figure 7.21 Comparison between analysis and test up to the second cycle
for Beam 66-35-RV10-60 (Brown and Jirsa [9])

106



load (KIPS)

30

201 Mesh 1

10+

-10 -

.20+

-30 } { t }
-3 -2 -1 0 1 2 3
displacement at the end of beam (in)

30

20 Mesh 2

-
(=]
1
T

(=

load (KIPS)

-
(=}
L
T

-20 4'

-30 } -+ i t
-3 -2 -1 0 1 2 3
defiection at the end of beam (in)

Figure 7.22 Comparison between Mesh 1 and Mesh 2
for Beam 88-34-RVS5-30 (Brown and Jirsa [9])

107



7.5 Reinforced Concrete Masonry Wall Tests under Cyclic Loading

(Shing et al.)

The analytical model is applied for the reinforced concrete masonry shear wall
tests performed by Shing et al. at The University of Colorado [31]. The experiments
were also analyzed by de la Rovere [31].

Shing's Walls 6, 10, and 12 are analyzed here. As shown in Figure 7.23, the
shear walls have a rigid base and a top slab. They are subjected to uniformly
distributed vertical loads and a concentrated horizontal load at the top slab. The vertical
loads remain constant during loading, while the lateral load varies. The shear walls are
reinforced by uniformly distributed vertical and horizontal steel layers. The loading
conditions and the properties of materials are shown in Table 7.2 [31).

For the analytical model, the shear wall and the top slab are idealized by twenty-
five 8-node rectangular elements and five 3-node line elements. The line elements
idealize the top slab with large axial stiffness; and the flexural stiffness of the top slab is
neglected. The vertical and horizontal reinforcing steel layers are idealized by smeared
reinforcement. The vertical load is idealized as equivalent joint loads, and the lateral
load is assumed to act on the middle of the top slab. At first, the vertical loads increase
up to the constant amount shown in Table 7.2, under force control, and the cyclic
lateral load then increases under displacement control.

In Figures 7.24 - 7.26, the analyses are compared with those from experiment
on Walls 7, 10, and 12. The experimental cyclic curves are picked up from the entire
history curves to clearly compare the analysis results. In the shear walls, the well-
distributed reinforcing steel layers and the vertical loads prevent the tensile cracks from
widening. Asa result, the shear walls fail due to compressive crushing of concrete.
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Wall 7 with heavy vertical reinforcement draws large horizontal load.
However, compression crushing occurs suddenly just after the maximum horizontal
load due to the relatively small horizontal reinforcement. On the other hand, Walls 10
and 12 with the reinforcement balanced horizontally and vertically have less load
capacity for horizontal load than Wall 7, but show ductile behavior after the maximum
horizontal load.

For all specimens, the analytical results follow the experiments reasonably well.
This is because the well-distributed reinforcement and the vertical load prevent the
tensile cracks from widening so that the tensile cracks spread over large area and
material deterioration due to cyclic loading is minimized. The member behavior after
the maximum member capacity depends heavily on the descending slope of the

compressive softening stress-strain relation of concrete. In these analyses,

o/ = ¢! [20andef = 15¢ are used for the final stress and strain in Figure 3.4.

c

Referring to Ref. 31, the author's analyses produce better predictions than de la
Rovere's analysis, especially for Wall 7.

As shown above, the proposed material model, using the concept of smeared
crack and smeared reinforcement, can predict the maximum load capacity of the shear
wall structures, and can also predict the post-failure behavior accurately, provided that
the softening relation in the descending branch of the concrete stress-strain curve is well

estimated.
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Table 7.2 Loading conditions and material properties of shear wall [31]

Wall | Masonry | Herizontal Steel Vertical Steel Axial
No. C, P fa Py S load
(psi) (%) (ksi) %) (ksi) (KIPS)
7 3000 0.14 56 0.74 70 0.01056
10 3200 0.14 56 0.38 63 0.01785
12 3200 0.24 66 0.38 63 0.01785
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8.0 SUMMARY, CONCLUSIONS, AND RECOMMENDATIONS

8.1 General

The purpose of this research is to develop a reliable analysis method which is
able to predict the complete behavior up to structural failure of reinforced concrete
planar members under cyclic as well as monotonic loading. The structural members to
which the analysis applies are beams, columns, beam-column joints, and shear walls,
all of which experience damage initiated by tension cracking.

The proposed analytical approach can simulate the behavior of reinforced
concrete structural members due to crack opening and closing, compressive crushing,
cyclic history of reinforcing steel and bond-slip between cracked concrete and
reinforcing steel.

By simulating the complete structural response, the proposed analytical
approach predicts behavioral characteristics such as ultimate strength, inelastic
deformations, primary crack orientations, and failure mechanisms, and is useful for the
design and retrofit of reinforced concrete structural members.

To accomplish the objectives noted above, this work includes an investigation
of material models for two-dimensional finite element analysis under in-plane cyclic and
monotonic loading. Also, several nonlinear solution schemes are investigated to
develop a numerically reliable analysis method. The proposed material models and the
numerical approach are verified using previously reported experimental results.
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8.2 Summary of Proposed Analysis Method

A cracked concrete material model, referred to as a rotating orthotropic axes

model with successive cracking, is proposed. This model complements existing

rotating crack models. In the proposed model, the following assumptions are used to

idealize the behavior of cracked reinforced concrete:

1)

2)
3)

3)

The concept of smeared cracking is assumed to be valid. The smeared crack
is regarded as a continuous material strain. Based on the concept of smeared
cracking, the tensile stress and strain of cracked concrete are defined in terms
of average stress and strain across tension cracks.

Principal stress axes coincide with principal strain axes.

Cracked concrete is idealized as an orthotropic material, and the orthotropic
axes coincide with principal axes. The progressive cracking process due to
primary and secondary cracking continuously gives behavioral directionality
of concrete in rotating principal axes. The orthotropic axes rotate to the
principal axes during loading.

In the orthotropic axes, equivalent uniaxial stress-strain relations in two
orthogonal principal axes are uncoupled in terms of material strain. In
cracked concrete, the tension stiffening stress induced by bonding action of
reinforcing steel is negligible compared with the compressive strength of
concrete, and it is localized around the reinforcing steel and the cracking zone.
Accordingly, the reciprocal effect of the compressive and tensile material

stress-strain relations is neglected. To consider the effect of crack opening,
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the equivalent uniaxial stress-strain relations are coupled in terms of average

strain.

On the basis of those assumptions, the concept of the proposed approach can be

summarized as follows:

1)

2)

3)

Since a uniaxial stress-strain state is maintained in cracked concrete, isotropic
compression damage representing concrete crushing is uniform in any rotating
principal direction. On the other hand, anisotropic tension damage, which
represents tensile cracking, localizes in the initial crack direction.
Compressive strength of concrete is reduced by the principal tensile strain
representing the existing crack opening.

Cracked concrete has considerable tension stiffening stresses as long as at
least one reinforcement layer crossing the existing cracks remains elastic.
Accordingly, the tension stiffening stress is not directly related to the current

principal strain, but the tensile strain of the reinforcement and its direction.

The general behavior of the proposed cracked concrete model is defined in the

following way:

1)

2)

The two-dimensional stress-strain relation is defined by two equivalent
uniaxial stress-strain curves in orthotropic axes. The orthotropic axes rotate
to current principal axes during the loading history.

The equivalent uniaxial stress-strain curve consists of envelope curves

(loading curves) and unloading-reloading curves connecting the envelope
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curves. The compressive envelope curve depends on the uniaxial stress-strain
relation, including the compression softening effect due to crack opening.
The tension stiffening stress of the tensile envelope curve is determined by the
influence of each reinforcement layer which remain elastic.

3) If the equivalent uniaxial strains exceed the compression or tension damage
surface, the damage surface expands according to its expansion rule, and the
equivalent stress-strain relation follows the compressive or tensile envelope
curve or the loading curve.

4) If the equivalent uniaxial strain lies inside the damage surfaces, the equivalent
stress-strain relation lies on the unloading-reloading curves connecting the

compressive and tensile envelope curves at the damage surfaces.

In addition to the proposed cracked concrete model, existing material models of
reinforcing steel and bond-slip are implemented in the analysis program. To idealize
reinforcing steel behavior in this study, two constitutive models are used: a bilinear
model including a kinematic hardening rule; and a strain hardening model including the
Bauschinger effect. The reinforcing steel is idealized by either discrete or smeared
elements. The bond-slip model idealizes the bond deterioration due to cyclic loading.
The bond-slip elements, which are out-of-plane rectangular elements, connect the in-
plane rectangular elements representing concrete and smeared reinforcemgnt, to line
elements representing discrete reinforcement.

A finite element computer program is developed to apply the proposed cracked
concrete model and the existing models of reinforcing steel and bond-slip. To produce
areliable solution scheme for the applied material models, extensive programming and
computer work has been performed. As a result, a simplified displacement-control
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method is used for the nonlinear numerical procedure, and Newton-Rapshon method

with tangent stiffness is used for the iteration scheme.

In Table 8.1, the various orthotropic axes models are compared with respect to

material modeling, analysis results, and the range of their application. The original

works of the proposed analysis method are the following considerations in material

models:

1)
2)

3)
4)

Two-dimensional tension stiffening model;

Isotropic damage due to compressive crushing and anisotropic damage due to
tensile cracking;

Cyclic characteristics of reinforcing steel including Baushinger effect; and

Bond-slip between concrete and reinforcing steel.

Also, the proposed analysis method predicts the complete behavior up to structural

failure, and extends its application to a variety of load conditions and structural

members.
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8.3 Conclusions

1)

2)

3)

4)

5)

6)

The rotating orthotropic axes model with successive cracking complements
the rotating crack model which is controversial. The concept of successive
cracking process justifies the fact that the orthotropic axes are established in
the current principal axes rotating during loading.

Fixed crack model is not appropriate to define the stress-induced orthotropic
characteristics of cracked concrete because secondary cracks are developed in
current principal axes different from primary crack direction.

The assumption that principal stress axes coincide with principal strain axes,
can overestimate the load capacity of structural members.

The proposed material model can predict the characteristics of shear-
dominated as well as flexure-dominated member behavior under monotonic
loading.

The proposed material model can predict the brittle failure of shear-dominated
members. By following member behavior up to a given target displacement
without numerical failure, the proposed model can clearly define a member's
maximum load capacity at which the brittle failure occurs.

The maximum load capacity of a shear-dominated member is affected by the
characteristics of the tension stiffening model. It is obvious that using the
tension stiffening model for direct tension underestimates the load capacity of
the beams. Accordingly, a tension stiffening model for two-dimensional
stress states, such as that proposed here, should be used.

The proposed model includes bond-slip behavior of discrete reinforcing steel
bars, so that it can predict the impact of bond-slip on the overall member
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8)

9

10)

11)

12)

behavior. Therefore, the proposed model can be used to investigate the
effects of an anchorage length on the member behavior.

The analysis using the proposed material model can predict the various types
of cyclic characteristics of planar structures. It can predict the types of the
member failure initiated by either reinforcing steel yielding or concrete
crushing, and can predict unloading-reloading behavior which is either shear-
dominated or flexure-dominated.

It is difficult to predict exactly the behavior due to fatigue failure, because
after several load reversals, bond deterioration and concrete spalling
significantly affect the behavior. The existing bond-slip model is not
sufficient to predict fatigue failure due to cyclic loading.

Since reasonably predicting most planar member behavior of cracked
concrete, the proposed analysis method can be applied for complex
combination of structural members, such as the substructure of beam,
column, and their joints.

The proposed analysis method provides a basis on implementing and
investigating the effect of the various phenomena of cracked concrete on the
overall member behavior, such as slip on the interface of supports, the
relation of crushed concrete and bond to reinforcement, the development
length of reinforcement, bond deterioration due to cyclic loading, and so on.
As far as the basic concept is concerned, the rotating orthotropic axes model
proposed here is an extension of the strut-and-tie model defined in a load-
displacement field, frequently used as an approximate analysis and design
method. However, the rotating orthotropic axes model can consider the
nature of cracked concrete behavior, such as compression softening due to
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crack opening and tension stiffening effects. Also, since it is possible to
adjust the direction of strut-and-tie to current principal axes by considering
equilibrium and compatibility conditions, the proposed model can reasonably

predict cyclic as well as monotonic behavior.

8.4 Recommendations for Further Research

1)

2)

3)

4)

5)

The proposed analysis program should be extended to address member
behavior governed by concrete crushing under biaxial compression.

To be used for general loading, the proposed material model should be
verified for non-proportional loading.

Since the cyclic characteristics of cracked concrete depends on the cyclic
stress-strain relation of reinforcing steel, it is recommended that more accurate
reinforcing steel model able to show reasonable Bauschinger effects be used.
In multiply cracked concrete, the behavior of reinforcement in a crack
direction is independent of that in the other crack direction, even for a single
reinforcement layer. Accordingly, the behavior of reinforcing steel should be
related not to the smeared strain in the reinforcement direction but to the
corresponding crack width. Since the current concept of smeared cracking
and smeared reinforcement does not permit consideration of individual
reinforcement behavior each crack direction, more research on the interaction
between cracks and reinforcement is required.

The proposed cracked concrete models, simplifying the actual stress-strain

relations, use the same stress-strain path in both unloading and reloading. To
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6)

7)

consider the material fatigue due to repeated loading, a more sophisticated
material model should be used.

For the member behavior governed by the yielding of reinforcing steel, bond-
deterioration due to cyclic loading is much more serious than that predicted by
the existing bond-slip model. For this reason, pond-slip between concrete
with closely spaced cracks and yielded reinforcing steel should be
investigated.

The bond-slip element, if the parameters are appropriately adjusted, can be
used for the various bond-slip behavior between prestressed tendon and
concrete in prestressed concrete, between different materials in composite

members, at the base of shear walls, and so on.
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APPENDICES (Finite Element Analysis Program)

A.1 Introduction of Program RCCRAK

The finite element analysis program RCCRAK (Two-Dimensional Analysis
of Reinforced Concrete with Crack Damage) was developed to complement the
author's research of cracked concrete behavior. The program can be used for
analysis of two-dimensional reinforced concrete structural members subjected to
either monotonic or cyclic loading, such as beams, beam-column joints, and shear
walls.

This program was written in Fortran 77 by the author. The matrix solution
subroutines and the memory array of this program are based on the program
distributed by Professor J. L. Tassoulas in the University of Texas at Austin. Asa
solution method of equations, the Frontal Method is implemented to save main
memory. As a nonlinear solution scheme, the Newton-Rapshon method with
tangent stiffness is used. Each equilibrium position during analysis is controlled by
the step size of either forces or displacements, initially given by elastic analysis,
The final equilibrium position in each load cycle is controlled by target forces or
displacements.

This program uses 4- and 8-node rectangular elements for concrete with
smeared reinforcement, 2- and 3-node line elements for discrete reinforcement, and
4- and 6-node out-of-plane rectangular elements for bond-slip. This program uses

the following material models as introduced in the main chapters:
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1)

2)

3)

1)

2)

3)

4)

)

6)

Cracked concrete model referred to as the rotating orthotropic axes model
with successive cracking, including compression softening and tension
stiffening;

Smeared and discrete reinforcing steel model of either bilinear model
including kinematic hardening or nonlinear model including Bauschinger

effect; and

Bond-slip model proposed by Eligehausen in the University of California

at Berkeley.

Next, several recommendations will be given for the program users.

This program does not accurately predict the member behavior governed
by biaxial compression stress states.

If convergence problems occur frequently during analysis, or if the load-
deflection curve is not smooth, reduce the loading step size.

A target tolerance of 1% is recommended. Smaller tolerances may increase
computer running time considerably.

It is recommended that large capacity computers, such as work-stations be
used, rather than micro-personal computer.

The structure should be idealized close to the actual support and loading
conditions. Concentrated loads can cause local failure or local large
deformation. The fixed supports can overestimate actual member
constraints.

The material models implemented in the program use simplified
unloading-reloading stress-strain paths. As a result, the analysis results
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under repeated loading (not complete cyclic loading) may not be close to
the experimental results.
7)  This program does not idealize the strength deterioration due to fatigue

phenomena, such as concrete spalling.

This program automatically produces two output files with the suffixes of
""GEN' and '.SPE'. The output file, 'filename.GEN', contains general
information of input data and displacement- and force- tolerances each iteration.
The output file, 'filename.SPE', contains the load and deformation at the selected
node. Also, the program produces unformatted files to be used for post-
processing. This program has a post-processing sub-program, RCPOST, to output
analysis results, such as applied loads, deformations, stress-strain relations,
orientation of principal axes, and bond stress-slip relations. The post-processing

will be presented in Section A.3.
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A.2 Example Input File

A2.1

General Information

'*' marks indicate selection options recommended by the author

1)  General Input

S

10.

12.
13.

14.

NYEXIST : restarting code
=0 (restart)
= 1 (new input file)
ICOMP : element type
= 1 (4 node rectangular & 2 node line elements)
=2 (8 node rectangular & 3 node line elements) *
NDIM : no. of dimension
NN : no. of nodes
NUMELI : no. of line elements
NUMELZ2 : no. of rectangular elements
NUMELS3 : no. of bond slip elements
NMAT!1 : no. material types of reinforcing steel
NMAT2 : no. material types of concrete with smeared steel
MNDOFN : maximum no. of degree of freedom per node
MNNE : maximum number of nodes per element
MNCM : maximum no. of constants per material type
NGAU : no. of Gaussian points per axis in a element
=2 (4 node rectangular & 2 node line elements)
=3 (8 node rectangular & 3 node line elements)
NCYCLE : no. of half load cycles

2) Material Input for Reinforcing Steel (NMAT1)

bl

NCM : no. of constant
CONSTM(1) : yield stress
CONSTM(2) : Young's modulus
CONSTM(3) : reinforcement ratio
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5 CONSTM(4) : direction with respect to x axis
6 CONSTM(5) : diameter

7.  CONSTM(6) : area

8 CONSTM(7) : strain hardening strain

9 CONSTM(8) : ultimate strain

10. CONSTM(9) : ultimate stress
11.  CONSTM(10) : ultimate bond stress, T,

12.  CONSTM(11): final bond stress, T
13.  CONSTM(12) : bond slip, §,

14. CONSTM(13) : bond slip, 5,

15. CONSTM(14): final bond slip, 5,

Material Input for Concrete with Smeared Steel (NMAT2)
NCM : no. of constant

it
.

2.  CONSTM(1) : maximum stress

3. CONSTM(2) : Poisson ratio

4. CONSTM(3) : thickness

5. CONSTM(4) : void

6.  CONSTM(S) : unit weight (positive direction in y axis)

7. CONSTM(6) : maximum stress in compression

8. CONSTM(7) : initial tangent stiffness in compression

9. CONSTM(8) : secant stiffness for maximum stress in compression
10. CONSTM(9) : secant stiffness for final stress in compression

11. CONSTM(10) : final stress in compression

12. CONSTM(11) : maximum stress in tension

13. CONSTM(12) : initial tangent stiffness in tension

14. CONSTM(13) : secant stiffness for maximum stress in tension

15. CONSTM(14) : secant stiffness for final stress in tension

16. CONSTM(15) : final stress in compression

17. CONSTM(16) : material type no. of reinforcement layer 1

18. CONSTM(17) : material type no. of reinforcement layer 2

19. CONSTM(18-21) : material type no. of discrete reinforcement bars affecting tension

stiffening in the corresponding element.
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4)

S)

6)

7)

woEwoe

»or v

el

w N

Coordinate Input (NN)

K : no. of node

X(1) : x coordinate

X(2) : y coordinate

2 (default)

IS(1) : constraint code for x degree of freedom
=0 (free)
= 1 (fixed)

IS(2) : constraint code for y degree of freedom

Element Input (NUMEL1 & NUMEL2 & NUMEL3)
K : no. of node
IELT : element type
=1 : line element
=2 : rectangular element
=3 : bond slip element
IELM : element material type
NNE : no. of node
ICONN(NNE) : connected node no.

ILOAD CASE 1 & LOAD CASE 2
NODE : node no.
P1(1) : joint load in x axis
P1(2) : joint load in y axis
-999999 : indication of the end of the load case

Nonlinear Information
ISOL : selection of compressive cyclic model of concrete
=1 : simplified model *
=2 : hysteresis model
NS : maximum no. of load step

MIT : maximum no. of iteration
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8)

N

TOL : tolerance
ISYM : symmetric matrix
= | (default)
NRHS : no. of right hand side (force vector)
= | (default)
EEFT : concrete final strain in tension
FFT : ratio of strain hardening stiffness to elastic stiffness for bilinear model of reinforcing
steel
IBAU : reinforcing model select code
= 1 : Bilinear model

=2 : Strain hardening model with Bauschinger effect *

Load Conditions (NCYCLE)
IFDIS : controlled variable selection code
= 1: load control
=2 displacement control *
NODE : controlled node ,
NNUDOF : controlled degree of freedom of NODE
CYLOAD: : target load or displacement of NNUDOF
FLDI1 : load factor of LOAD CASE 1
FLD?2 : load factor of LOAD CASE 2
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A.2.2 Example Input Data for Wall 7

Graphical Description of Wall 7

twenty five 8-node

Vs
' 7
- -
5 25 % element for wall
— %
% five 3-node line element
— % 5 for top slab
% S
—_— %
% Y
- %
1 20 |7 B
/ X
reference point / . ,%
72 in
INPUT DATA
02 NYEXIST ICOMP
2 NDIM
965250 NN NUMEL1 NUMEL2 NUMEL
312 NMAT1 NMAT2 MNDOFN
821312 MNNE MNCM NGAU NCYCLE
9 56.D0 2.9D4 0.14d-2 90.D0 1.59D0 1.D0 0.01D0 0.2DO0 NCM CONSTM(1-14)
80.DO
9 63.D0 2.9D4 0.38D-2 -0.DO0 1.59D0 1.D0 0.01D0 0.2D0 NCM CONSTM(1-14)
87.D0
9 58.D0 2.9D4 0.0d-2 90.D0 1.59D0 1.D8 0.01D0 0.2D0 NCM CONSTM(1-14)
87.D0
21 3.2D0 0.15D0 5.625D0 2.D0 0.D-2 NCM CONSTM(1-21)
3.2D0 2460.D0 1230.D0 4.D0 .15D0
1.D-1 2460.D0 500.D0 100.D-1 0.6D-1
1.D0 2.D0 0.D0 0.DO 0.DO 0.DO
10D00.D020 O K X(1) X(2) 2 IS(1) IS(2)
20D06.D0 200
30D012D0 200
40D020D0 200
50D028D0 200
60D036.D0 200
70D044D0 2 00
80D052.D0 200
90.D060.D0 2 0 0
100.D066.D0 2 0 O
110D072.D0 200
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1210.000.D0 2 0 O
13 10.D0 12.D0 2
14 10.D0 28.D0 2
15 10.D0 44.D0 2
16 10.D0 60.D0 2
17 10.D0 72.D0 2
18 20.D0 0.DO 2
19 20.D0 6.D0 2
20 20.D0 12.D0
21 20.D0 20.D0
22 20.D0 28.D0
23 20.D0 36.DO
24 20.D0 44.D0
25 20.D0 52.D0
26 20.D0 60.DO
27 20.D0 66.D0
28 20.D0 72.D0
2930.D00.D0 2 0 0
30 30.D0 12.DO 2
31 30.D0 28.D0 2
32 30.D0 44.D0 2
2
2

OOOOOOOOOEOOOOOO
OCOOCOCOOOOO OOOOOO

NN

33 30.D0 60.D0
34 30.D0 72.D0
35 40.D0 0.D0 2
36 40.D06.D0 2
37 40.D0 12.D0
38 40.D0 20.DO
39 40.D0 28.D0
40 40.D0 36.D0
41 40.D0 44.D0
42 40.D0 52.D0
43 40.D0 60.D0
44 40.D0 66.D0
45 40.D0 72.D0
46 48.D00.D0 2 0 O
47 48.D0 12.D0 2
48 48.D0 28.D0 2
49 48.D0 44.D0 2
2
2

COOOCOOOQ [=NNeNoNo)

NN

50 48.D0 60.D0
51 48.D0 72.D0
52 56.D0 0.D0 2
53 56.D0 6.D0 2
54 56.D0 12.D0
55 56.D0 20.D0
56 56.D0 28.D0
57 56.D0 36.D0
58 56.D0 44.DO0
59 56.D0 52.D0
60 56.D0 60.DO
61 56.D0 66.D0
62 56.D0 72.D0
6361.D00.D0 2 0 O
64 61.D0 12.D0 2

65 61.D028.D0 2

OOOOOOOOO:OOOOOO
(=N =N oo N NNl OOOOOO

NN

[=N =)
(=N~
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66 61.D044.D0 2 0 0

67 61.D060.D0 2 0 0

6861.D072.D0 2 0 O

6966.D00.D0 2 0 O

7066.006.D0 2 0 O

7166.D012.D0 2 0 O

7266.D020.D0 2 0 O

7366.D028.D0 2 0 O

74 66.D036.D0 2 0 0

7566.D044.D0 2 0 0

76 66.D052.D0 2 0 0

77 66.D060.D0O 2 0 O

78 66.D066.D0 2 0 0

7966.D072.D0 2 0 O

8069.D00.D0 2 0 O

8169.D012.D0 2 0 0

8269.D028.D0 2 0 0

8369.D0044.D0 200

8469.D060.D0 2 0 O

8§569.D072.D0 2 0 O

86 72.D00.D0 2 1 1

8772D06.D0 2 1 1

8872.D012.D0 2 1 1

8972.D020.D0 2 1 1
9072.D028.D0 2 1 1
9172.D036.D0 2 1 1

9272.D044D0 2 1 1

9372.D052.D0 2 1 1

94 72.D060.D0 2 1 1

9572.D066.D0 2 1 1

96 72.D072.D0 2 1 1
12182031 181321219
221822532014 413 2]
3218247522156 14 23
42182 972416 81525
5218281192617 10 16 27
6 21 837 20 18 35 30 19 29 36
721 8392220 37 31 21 30 38
8 21 84124 22 39 32 23 31 40
921 84326 24 41 33 25 32 42
10 2 1 845 28 26 43 34 27 33 44
11 2 1 8 54 37 35 52 47 36 46 53
12 2 1 8 56 39 37 54 48 38 47 55
13 21 8 58 41 39 56 49 40 48 57
14 2 1 8 60 43 41 58 50 42 49 59
1521 8 62 45 43 60 51 44 50 61
16 21 8 71 54 52 69 64 53 63 70
17 21 8 73 56 54 71 65 55 64 72
18 2187558 56 73 66 57 65 74
19218 7760 58 75 67 59 66 76
20218796260 77 68 61 67 78
21 21 8 88 71 69 8 81 70 80 87
222189073 71 88 82 72 81 89
232189275 73 90 83 74 82 91
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N

N
— ettt N DD
W W W WU = -

1 NODE
2.d0 0.d0 Pi(1) P1(2)
2

4.d0 0.d0

3

4.d0 0.d0

4

4.d0 0.d0

5

4.40 0.d0

6

4.d0 0.d0

7

4.d0 0.d0

8

4.d0 0.d0

9

4.d0 0.d0

6 NODE
0.D0 20.DO0 P1(1) P1(2)

1 ISOL

4000 50 1.D-2 NS MIT TOL

11 ISYM NRHS

1.d-3 200.DO EEFT FFT

2 IBAU

161 440 .1d0 0.d0 IFDIS NODE NNUDOF CYLOAD
FLD1 FLD2

[

0.1987d0 0.d0 1.d0
-0.1955d0 0.d0 1.d0
0.4887d0 0.d0 1.d0
-0.48d0 0.d0 1.d0
0.7865d0 0.d0 1.d0
-0.9366d0 0.d0 1.d0
1.111d0 0.d0 1.d0
-1.1436d0 0.d0 1.d0
1.4425d0 0.d0 1.d0
-1.5056d0 0.d0 1.d0
2 0.d0 0.d0 1.dO

RS EOESE SRS ESESE SE SN S
[~ - W~ W~ N W N W - N -
NNMNDNNNNNDNDON

g
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A.3 Post-Processing (RCPOST)

A.3.1 General

Post-processing is carried out after execution of the analysis program,
RCCRAK. To execute the post-processing program, RCPOST, the original input
file, unformatted files produced by RCCRAK, and a post-processing input file
should exist in the working directory. The unformatted files have suffixes of
' 003" and '.004' with the original input file name. The post-processing input file
should have the same file name as the original input file name with a suffix of
"PSP'. The output files contains the following analysis results after the post-

processing.

filename.DIS : force and deformation
filename.STR : stress and strain of concrete
filename.REN : stress and strain of discrete and smeared reinforcing steel

filename.AST : shear stress and slip of bond-slip element
A.3.2 Input Information of 'filename.PSP'

1. IMED

=0 : load-deflection information

=1 : stress-strain information
2. ICODE :

=0 : node basis (nodal displ. and forces at all load steps)

=1 : load step basis (all nodal displ. and forces at the specified load step)
3. NLN:

If ICODE =0, select desired nodal no.
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If ICODE = 1, select desired load step no.
4. NELP : select desired element no.
5. ICODEI! : desired no. of loading steps
= 0 : Gauss point basis
(stresses and strains at the specified Gauss point in all load steps)
=1 : load step basis
(stresses and strains at all Gauss points in the specified load step)
6. NGAP:
If ICODELI =0, select desired Gauss point no.
If ICODE]1 = 1, select desired load step no.

137



A.4 Program Listings

PROGRAM RCCRAK
IMPLICIT REAL*8 (A-H,0-2)
DIMENSION A(40000),IA(4000)
CHARACTER*12 IN,OUT, DISFIL,STRFIL
CHARACTER*12 STOREL, STORE2, STORE3, STORE4
CHARACTER*1 TAB
LOGICAL YESNO
COMMON /CNTL,/ ISYM,NUMEL, TRESOL,NRHS,NTAPEB, NTAPEU, NTAPEL,
MA, ITWRT, TPRINT, IERR, NNEGP, NPOSP, NRHSF,
* IB, IU, IL, IFB, IFU, IFL, MBUF, MW, MKF,,
* MELEM, MFWR, MB, MDOF , MFW, MLDEST
COMMON /INDS/ INDR(60),INDI(30)
COMMON /DIMS/ MNCM,MNDOFN, MNNE, NDIM, NMAT1, NMAT2, NN, MNDOFE, MNDOF,
* NUMEL1, NUMEL2, NUMEL3, ITCOMP, NGAU, IARC, IBAU, ISTL
COMMON /CONSTS/ ZERO, ONE, TWO
COMMON /ITRN/ JST,IST
COMMON /CL/ ISOL,ISP
COMMON /CNTL1/ TAB
COMMON /CNTL2/ EEFT, FFT,TOL
DATA NRA/40000/
DATA NIA/4000/
TAB=CHAR (9)
CALL CLEAR(A,NRA)
CALL ICLEAR(IA,NIA)
CALL CNCLEAR
1 WRITE(*,*) 'ENTER INPUT FILE NAME:'
READ (*,2) IN
2 FORMAT(Al2)
INQUIRE (FILE=IN, EXIST=YESNO)
IF (YESNO) GO TO 3
WRITE(*,*) 'INPUT FILE DOES NOT EXIST.'
GO TO 1
3 IDWM=0
DO 25 I=l,12
IF(IN(I:I).EQ."' '.OR.IN(I:I).EQ.'.') GOTO 27
25 IDUM=IDUM+1
27 STORE1=IN(1:IDUM)
STORE2=IN(1:IDUM)
STORE3=IN(1:IDUM)
STORE4=IN(1:IDUM)
STOREL {(IDUM+1:IDUM+4) =" .001"
STORE2 (IDUM+1:IDUM+4) ="' .002"
STORE3 (IDUM+1:IDUM+4)='.003"
STORE4 (IDUM+1:IDUM+4) ='.004"
WRITE(*,*) 'ENTER OUTPUT FILE NAME:'
READ(*,2) OUT
5 IDUM=0
DO 7 I=1,12
IF(OUT(I:I).EQ.' '.OR.OUT(I:I).EQ.'.') GOTO 9
7 IDUM=IDUM+1
9 DISFIL=OUT (1:IDUM)
STRFIL=OUT (1: IDUM)
DISFIL(IDUM+1:IDUM+4)="_.GEN'
STRFIL{IDUM+1:IDUM+4)="'_.SPE"
INQUIRE ( FILE=DISFIL, EXIST=YESNO)
IF(YESNO) THEN
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WRITE(*,*) 'OUTPUT FILE ALREADY EXISTS.'
WRITE(*, *) 'WARNING: UNLESS YOU SPECIFY A DIFFERENT NAME, ',
* *THE FILE WILL BE OVERWRITTEN.'
WRITE(*, *) 'ENTER OUTPUT FILE NAME:'
READ(*,2) OUT
GOTO 5
ENDIF
OPEN (UNIT=5, FILE=IN, STATUS='OLD")
OPEN (UNIT=50, FILE=DISFIL, STATUS="'UNKNOWN"')
OPEN (UNIT=51, FILE=STRFIL, STATUS="'UNKNOWN" )
OPEN (UNIT=40, FILE=STORE, STATUS="'UNKNOWN' , FORM="'UNFORMATTED" )
OPEN (UNIT=41, FILE=STORE2, STATUS="'UNKNOWN' , FORM="'UNFORMATTED" )
OPEN (UNIT=42, FILE=STORE3, STATUS="'UNKNOWN"' , FORM="'UNFORMATTED" )
OPEN (UNIT=43, FILE=STORE4, STATUS='UNKNOWN' , FORM="'UNFORMATTED' )
OPEN (UNIT=20, STATUS='SCRATCH', FORM="'UNFORMATTED" )
OPEN (UNIT=21, STATUS='SCRATCH', FORM="'UNFORMATTED" )
OPEN (UNIT=22,STATUS='SCRATCH', FORM="'UNFORMATTED')
OPEN (UNIT=23,STATUS='SCRATCH', FORM="'UNFORMATTED"' )
READ (5, *) NYEXIST, ICOMP
WRITE(S0,11) NYEXIST,ICOMP
11 FORMAT(1X,'FILE EXIST MODE:', 1X,I1,/,
* 1X, ' INCOMPATIBLE ELEMENT MODE:', 1X,Il,/)
READ (5, *) NDIM
WRITE(50,10) NDIM
10 FORMAT(1X, 'NUMBER OF DIMENSIONS:',1X,Il,/)
READ (5, *) NN,NUMEL1,NUMEL2, NUMEL3,
* NMAT1, NMAT2 , MNDOFN, MNNE , MNCM, NGAU
READ(5, *) NCYCLE
WRITE(50,20) NN,NUMEL1,NUMEL2, NUMEL3,
* NMAT1, NMAT2 , MNDOFN, MNNE, MNCM, NGAU,
NCYCLE
20 FORMAT(1X, 'NUMBER OF NODES:', 1X,I4,/,
1X, '"NUMBER OF TRUSS ELEMENTS:',1X,I3,/,
1X, *NUMBER OF PLANE STRESS ELEMENTS:',1X,I3,/,
1X, '"NUMBER OF BOND-SLIP ELEMENTS:', 1X,I3,/,
1X, *NUMBER OF MATERIALS OF TRUSS ELEMENTS:',1X,13,/,
1X, '"NUMBER OF MATERIALS OF PLANE STRESS ELEMENTS:',1X,I3,/,
1X, 'MAX. NUMBER OF DEGREES OF FREEDOM PER NODE:',lX,I3,/,
1X, "MAX. NUMBER OF NODES PER ELEMENT:', 1X,I3,/,
1X, 'MAX. NUMBER OF CONSTANTS PER MATERIAL:',1X,I3,/,
1X, '"NUMBER OF GAUSSIAN POINTS:',1X,I3,/,
1X, 'NUMBER OF CYCLE OF LOAD:', 1X, I3, /)
NUMEL=NUMEL ] +NUMEL2 +NUMEL3

*

LA R IR 2. B BN

MNDOFE=MNNE *MNDOFN
MNDOF=NN*MNDOFN
C
C.....REAL STORAGE ALLOCATION
[
INDR(1)=1
C
C.....X COORDINATE
C
INDR(2)=INDR(1) +NN*NDIM
C
Coennn ARRAY TO STORE THE SOLUTION (DISPLACEMENT/ROTATION VECTOR)
C
INDR(3)=INDR(2) +NN*MNDOFN
[
C.....SM(ESM) ELEMENT STIFFNESS
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INDR(4)=INDR(3) + (MNNE*MNDOFN) **2

g ..... ELRHS ELEMENT RIGHT HAND SIDE

¢ INDR (5)=INDR (4 ) +MNNE*MNDOFN

g. ....CONSTM1 CONSTANTS FOR LINE ELEMENT (REINFORCING STEEL)
y INDR (6 )=INDR(5) +NMATL*MNCM

cC:WORKING COPY OF P

¢ INDR(7)=INDR(6) +NN*MNDOFN

g ..Y(EX) NODAL COORDINATE IN A ELEMENT

© INDR (8)=INDR(7) +MNNE*NDIM

g. ....V(EU) NODAL DISPLACEMENT IN A ELEMENT

© INDR(9) =INDR (8) +MNNE*MNDOFN

g .PERMANENT COPY OF P1(DP)

y INDR(10)=INDR (9) +NN*MNDOFN

g.....R INTERNAL NODAL FORCE

¢ INDR(11)=INDR(10) +MNDOF

g.....DR UNBALANCE FORCE

¢ INDR(12)=INDR(11) +MNDOF

g ..... U NODAL DISPLACEMENT

¢ INDR(13)=INDR(12) +MNDOF

g. ....CONSTM2 CONSTANTS FOR CONCRETE WITH SMEARED REINFORCEMENT
¢ INDR(14)=INDR (13) +NMAT2*MNCM

g ..... DUL INCREMENTAL DISPLACEMENT 1

¢ INDR(15)=INDR(14) +MNDOF

g. ....DU2 INCREMENTAL DISPLACEMENT 2

c INDR (16 ) =INDR(15) +MNDOF

g. ....EEU NODAL INCREMENTAL DISPLACEMENT IN A ELEMENT
c INDR(17)=INDR(16) +MNDOFE

g ..... EEP NODAL INCREMENTAL FORCE IN A ELEMENT

© INDR(18)=INDR(17) +MNDOFE

C

140



C.....P TOTAL FORCE

© INDR (19 ) =INDR ( 18) +MNDOF
g. ....DDU TOTAL INCREMENTAL DISPLACEMENT
© INDR (20 ) =INDR ( 19) +MNDOF
<c:: ..... DDP TOTAL INCREMENTAL FORCE
¢ INDR (21)=INDR (20) +MNDOF
g ..... STl  PREVIOUS TOTAL STRESS
c INDR (22) =INDR (21) +3 *NGAU*NGAU*NUMEL2
g. ....PST PREVIOUS TOTAL STRESS BEFORE ITERATION
c INDR (23 ) =INDR(22)
g. ... AGP PREVIOUS PRINCIPAL STRESS AXIS
© INDR (24 ) =INDR (23) +NGAU*NGAU*NUMELZ2
g ..... PMAX  PREVIOUS MAX OR MIN STRAIN
c INDR (25) =INDR (24) +28*NGAU*NGAU*NUMEL2
INDR(26) =INDR(25)
S:EMAX PREVIOUS MAX OR MIN STRAIN OF SMEARED STEEL
© INDR(27)=INDR (26) +2*6 *NGAU*NGAU*NUMEL2
INDR (28) =INDR (27)
g.. ...RST1 PREVIOUS TOTAL STRESS OF SMEARED STEEL 1
¢ INDR (29 ) =INDR (28) +NGAU*NGAU*NUMEL2
g ..... RDST1 TOTAL STRESS INCREMENT OF SMEARED STEEL 1
¢ INDR(30)=INDR{29)
g ..... RST2 PREVIOUS TOTAL STRESS OF SMEARED STEEL 2
c INDR (31)=INDR (30) +NGAU*NGAU*NUMEL2
(C: ..... RDST2 TOTAL STRESS INCREMENT OF SMEARED STEEL 2
¢ INDR({32)=INDR(31)
g. ....EMAX1 PREVIOUS MAX STRAIN OF SEPERATED STEEL
c INDR(33) =INDR(32) + 6 *NGAU*NUMEL1
g. ....EMAX3 PREVIOUS MAX STRAIN OF BOND-SLIP
¢ INDR(34)=INDR(33)+11*NGAU*NUMEL3
g. . ...RST PREVIOUS TOTAL STRESS OF SEPERATED STEEL
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INDR (35)=INDR (34 ) +NGAU*NUMEL1

c
Covenn BRST PREVIOUS TOTAL STRESS OF BOND
c
INDR (36)=INDR (35) +NGAU*NUMEL3
INDR(37)=INDR(36)
c
Coou.. CYLOAD TARGET DISPLACEMENT OR FORCE EACH ILOAD CYCLE
c
INDR(38)=INDR (37) +NCYCLE
c
C..... PERMANENT COPY OF P2 (DP)
c
INDR (39)=INDR (38) +NN*MNDOFN
c
C.....FLD1 LOAD FACTOR FOR LOAD CASE 1
c
INDR(40)=INDR(39) +NCYCLE
c
Covunn FLD2 LOAD FACTOR FOR LOAD CASE 2
c
INDR (41)=INDR (40) +NCYCLE
INDR(42)=INDR({41)
INDR (43)=INDR(42)
INDR (44)=INDR (43)
INDR (45)=INDR (44)
INDR(46)=INDR(45)
INDR (47)=INDR (46)
INDR(48)=INDR(47)
INDR (49)=INDR(48)
INDR (50)=INDR (49)
INDR (51)=INDR(50)
INDR(52)=INDR(51)
INDR(53)=INDR(52)
INDR (54)=INDR (53)
INDR (55)=INDR(54)
INDR (56)=INDR (55)
INDR(57)=INDR(56)
INDR(58)=INDR(57)
INDR (59 )=INDR(58)
c
Covrn. ARRAY FOR SUBROUTINE SOLVE
c
INDR (60)=INDR{59)
MAXRA=TNDR(60) -1
c
C.....INTEGER STORAGE ALLOCATION
c
INDI(1)=1
c
C..... NDOFN NO. OF D.O.F. PER NODE
c
INDI (2)=INDI (1) +NN
c
C.....IS SUPPORT CONDITIONS
c
INDI (3) =INDI (2) +NN*MNDOFN
c

142



C..... ICONN CONNECTIVITY

¢ INDI (4)=INDI (3) +NUMEL*MNNE
(C: ..... IELT ELEMENT TYPES
€ INDI (5)=INDI (4) +NUMEL
g ..... NNE NO. OF NODE PER ELEMENT
© INDI(6)=INDI (5) +NUMEL
g ..... INTEGER ARRAY USED IN SUBROUTINE PREFNT
c INDI (7)=INDI (6) +NUMEL
g. .+ ..ANOTHER INTEGER ARRAY USED IN SUBROUTINE PREFNT
c INDI(8)=INDI(7) +2* (NUMEL*MNNE+MNNE)
g ..... IDEST
C
INDI (9)=INDI (8) +NUMEL*MNNE
g ..... NDOFE NO. OF D.O.F. PER ELEMENT
© INDI (10)=INDI (9) +NUMEL
g ..... IEIM MATERIAL NO. FOR EACH ELEMENT
¢ INDI(11)=INDI(10)+NUMEL
g.. ...IEL1 NO. OF LINE ELEMENT
Ny INDI(12)=INDI (11)+NUMEL
g. .»..IEL2 NO. OF RECTANGULAR ELEMENT
¢ INDI(13)=INDI(12)+NUMEL
INDI(14)=INDI(13)
g ..... IEL3 NO. OF BOND-SLIP ELEMENT
c INDI (15)=INDI (14 ) +NUMEL
CC:. .« ..NUDOF SPECIFIED DEGREE OF FREEDOM
¢ INDI(16)=INDI (15)+NCYCLE
g. .« ..IFDIS INDICATION OF FORCE OR DISPL. CONTROL EACH LOAD CYCLE
C

INDI (17)=INDI (16) +NCYCLE
INDI(18)=INDI(17)
INDI(19)=INDI(18)
INDI(20)=INDI(19)
INDI(21)=INDI (20)
INDI(22)=INDI(21)
INDI (23)=INDI(22)
INDI (24)=INDI (23)
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INDI (25)=INDI (24)
INDI (26) =INDI (25)
INDI (27)=INDI(26)
INDI (28) =INDI (27)
INDI (29)=INDI (28)
INDI (30)=INDI (29)
MAXTA=INDI (30)-1
IF(MAXRA.GT.NRA) THEN
WRITE (50,30) MAXRA
30 FORMAT(1X, 'INSUFFICIENT REAL MEMORY LOCATIONS',/,
* 1X, 'REQUIRED LENGTH OF ARRAY A:', 1X,I7)
STOP
ELSE
WRITE(50,40) NRA-MAXRA
40 FORMAT(1X, 'NUMBER OF UNUSED REAL MEMORY WORDS:',1X,I7)
ENDIF
IF(MAXIA.GT.NIA) THEN
WRITE (50,50) MAXIA
50 FORMAT (1X, 'INSUFFICIENT INTEGER MEMORY LOCATIONS',/,
* 1X, 'REQUIRED LENGTH OF INTEGER ARRAY A:',1X,I7)
STOP
ELSE
WRITE (50, 60) NIA-MAXIA
60 FORMAT (1X, 'NUMBER OF UNUSED INTEGER MEMORY WORDS:', 1X,I7)
ENDIF
CALL INMAT(A(INDR(5)),A(INDR(13)),NMAT1, NMAT2, MNCM)
CALL INNOD(A(INDR(1l)),IA(INDI(l)),IA(INDI(2)),

* NDIM, NN, MNDOFN)
CALL INEL(IA(INDI(4)),IA(INDI(10)),IA(INDI(5)),IA(INDI(3)),
* IA(INDI(1)),IA(INDI(9)),NN, NUMEL, MNNE,

* NUMEL1,NUMEL2, NUMEL3, TA(INDI (11)), IA(INDI (12)),

* IA(INDI(14)))

CALL LOAD(A(INDR(9)),A(INDR(38)),IA(INDI(1)),

* NN, MNDOFN )

CALL NONE (ISOL,NS,NIT,MIT,TOL, ISYM, NRHS,

* EEFT, FFT, IARC, NCYCLE, A(INDR(37) } , IBAU, ISTL,
* MNDOFN, A(INDR(39)),A(INDR(40)),IA(INDI(15)),IA(INDI(16)))
IF(NYEXIST.EQ.1l) THEN

READ(41) JSTP

REWIND 41

IF(NS.LT.JSTP) THEN

WRITE(*,*) 'ERROR! NO OF STEP SHOULD BE INCREASED'
STOP

ENDIF

ENDIF

..... PREPARE FOR ASSEMBLY AND SOLUTION

CALL PREP(IA(INDI(6)),IA(INDI(7)),

* IA(INDI(5)),IA(INDI(1)),IA(INDI(3)),
* NUMEL, NN, M\NE)

IRESOL=0

NTAPEB=20

NTAPEU=21

NTAPEL~22

IPRINT=1

JST=0

CALL PREFNT(IA(1),IA(INDI(6)),IA(INDI(7)),MS,MU,MR)
MAMIN= (MDOF* (MDOF+1) ) /2+MDOF*NRHS+
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* (MFW* (MFW+1) ) /2+MFW*NRHS +
* NUMEL+MLDEST+2*MDOF +MFW+NRHS
WRITE(50,70) MAMIN
70 FORMAT(1X, 'MINIMUM MEMORY (REQUIRED) BY THE SOLVER:',1X,I7)
MA=NRA-MAXRA
WRITE(50,80) MA
80 FORMAT (1X, *MEMORY AVAILABLE TO THE SOLVER:', 1X,I7)
IF(MAMIN.GT.MA) THEN
WRITE (50,90) MAXRA+MAMIN
90 FORMAT(1X, 'LENGTH OF REAL ARRAY A MUST BE AT LEAST:', 1X,I7)

STOP
ENDIF
WRITE(51, 1000)
1000 FORMAT(//,'*** DISPL. AND FORCE OF SPECIFIED NODE **+!,/,
* 'LOAD STEP ', 'DISPLACEMENT ','FORCE ')

WRITE({50,2000)
2000 FORMAT(//,'*** INCREMENTAL DISPL. AND FORCE TOLERANCES *kkr f,

* 'LOAD STEP ','ITER. NO.', 'FORCE TOL. ', 'DISPL. TOL. ')
CALL ARCDIS (A, IA,NS,NIT,MIT, TOL,NYEXIST,

* NCYCLE)
END

SUBROUTINE ARCDIS (A, IA,NS,NIT,MIT,TOL,NYEXIST,

* NCYCLE)

IMPLICIT REAL*8 (A-H,0-2)

COMMON /CNTL/ ISYM,NUMEL, IRESOL,NRHS, NTAPEB, NTAPEU, NTAPEL,

* MA, IWRT, IPRINT, TERR, NNEGP, NPOSP, NRHSF,
* IB, IU, IL, IFB, IFU, IFL, MBUF, MW, MKF,
* MELEM, MFWR , MB, MDOF , MFW, MLDEST

COMMON /INDS/ INDR(60),INDI (30)
COMMON /DIMS/ MNCM, MNDOFN, MNNE, NDIM, NMAT1, NMAT2 , NN, MNDOFE, MNDOF,
* NUMEL1, NUMEL2, NUMEL3, ICOMP, NGAU, IARC, IBAU, ISTL
COMMON /CONSTS/ ZERO, ONE, TWO

COMMON /ITRN/ JST, IST

COMMON /CL/ ISOL,ISP

COMMON /CNTL1/ TAB

DIMENSION A(1),IA(1)

DIMENSION SSPU(20),SSPP(20)

c
Civunn SET STEP SIZE
c
IST=0
JST=0
DTOL=1.D0
DSD=1.D0
PDSD=1.D0
DS=DSQRT(1.D0+1.D0)
DLM2=1.D0
DO 100 ICYIL=l,NCYCLE
NUDOF=IA (INDI (15) +ICYL-1)
c
C.....GET A WORKING COPY OF P
c
CALL AEBC(A(INDR(6)),A(INDR(9)),A(INDR(38)),
* A(INDR(39) +ICYL-1) ,A(INDR(40) +ICYL-1) , NN*MNDOFN)
c
Coewvn. (ASSEMBLE AND) SOLVE
c

CALL SOLVE(A(1),IA(1),A(INDR(59)))
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C

C.....SET STEP SIZE EACH LORD CYCLE

Cc

NDUM=INDR(2) +NUDOF- 1
SSPU (ICYL)=A(NDUM)
NDUM=INDR(6) +NUDOF- 1
SSPP (ICYL)=A(NDUM)

100 CONTINUE

nan

«....CLEARTNG ARRAY

IDUM=INDR(5) -INDR(2)

CALL CLEAR(A(INDR(2)),IDUM)
IDUM=INDR(9) -INDR(6)

CALL CLEAR (A(INDR(6)),IDUM)
IDUM=INDR(13) -INDR(10)

CALL CLEAR(A(INDR(10)),IDuM)
IDUM=INDR(23) -INDR(14)

CALL CLEAR(A(INDR(14)),IDUM)
IDUM=INDR(37) -INDR(24)

CALL CLEAR(A(INDR(24)),IDUM)
CALL CLEAR(A(INDR(41)), (INDR(60)-INDR(41)+1))

C..... READING EXISTING FILE

PFORCE=0.D0

ICYLP=1

DSIG=1.D0
SSDU=0.D0
SSDP=0.D0

SSDUP=0.D0
SSDPP=0.D0
IF(NYEXIST.EQ.1l) THEN

READ(40)
READ(40)
READ(40)
READ(40)
READ(40)
READ(40)
READ(40)
READ(40)
READ(40)
READ(40)
READ(40)
READ (40)
READ(40)
READ(40)
READ (41)
READ(41)
READ(41)

REWIND 40

(A(IT),IT=INDR(18),INDR(18)+MNDOF)
(A(II),II=INDR(10),INDR(10)+MNDOF)
(A(II),II=INDR(11),INDR(11)+MNDOF)
(A(II),II=INDR(12),INDR(12)+MNDOF)
(A(II),IT=INDR(21),INDR(21)+3*NGAU*NGAU*NUMEL?2)
(A(II),IT=INDR(23),INDR(23)+NGAU*NGAU*NUMEL2)
(A(II),IT=INDR(24), INDR (24)+28*NGAU*NGAU*NUMEL.2)
(A(II),II=INDR(26),INDR(26) +2*6 *NGAU*NGAU*NUMEL2)
(A(II),II=INDR(28),INDR(28) +NGAU*NGAU*NUMEL2)
(A(II),ITI=INDR(30),INDR(30) +NGAU*NGAU*NUMEL2)
(A(II),IT=INDR(32),INDR({32)+6*NGAU*NUMEL)
(A(IT),IT=INDR(33), INDR(33)+11*NGAU*NUMEL3)
(A(II),II=INDR(34),INDR(34) +NGAU*NUMEL1)
(A(IT),IT=INDR(35),INDR(35) +NGAU*NUMEL?3)

JSTP, IST, ICYLP

DS, CON2,DSIG, CZ, SSDU, SSDP, PDSD

SSPECU, SSDUP, SSDPP, DDTOL, PFORCE

REWIND 41

ELSE
JSTP=0
ENDIF

JST=JSTP

c

C....LOAD CYCLES

C
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2405

1000

DO 4600 ICYL=ICYLP,NCYCLE
NUDOF=IA(INDI(15)+ICYL-1)
IFDIS=IA(INDI(16)+ICYL-1)
SSPECU=SSPU(ICYL)

SSPECP=SSPP (ICYL)

SCAL=1.D0

IF(IFDIS.EQ.2) THEN

NDUM=INDR (12) +NUDOF - 1

PFORCE=A (NDUM)

ELSEIF(IFDIS.EQ.1) THEN

NDUM=INDR ( 18) +NUDOF - 1

PFORCE=A (NDUM)

ENDIF

NDUM=INDR (37) +ICYL-1

TFORCE=A (NDUM)

WRITE(*, 2405) ICYL,TFORCE

FORMAT (/,2X, 'CYCLE NO = ',I5,10X,D13.5)
IF(IFDIS.EQ.1) THEN

NDUM=INDR (18) +NUDOF- 1

IF ( (TFORCE-A(NDUM) ) *SSPECP.GE.0.D0) THEN

PDSD=1.D0
ELSE
PDSD=-1.D0
ENDIF

ELSEIF (IFDIS.EQ.2) THEN

NDUM=INDR (12) +NUDOF- 1

IF((TFORCE-A(NDUM) ) *SSPECU.GE.0.D0) THEN
PDSD=1.D0

ELSE

PDSD=-1.D0

ENDIF

ENDIF

JST=JST+1

DSD=PDSD

CZ=1.D0

WRITE(23) (A(II),II=INDR(21),INDR(21)+3*NGAU*NGAU*NUMEL2)
WRITE(23) (A(II),II=INDR(28),INDR(28)+NGAU*NGAU*NUMEL?2)
WRITE(23) (A(II),II=INDR(30),INDR(30)+NGAU*NGAU*NUMEL2)
WRITE(23) (A(II),II=INDR(23),INDR(23)+NGAU*NGAU*NUMEL2)
WRITE(23) (A(II),II=INDR(34),INDR(34)+NGAU*NUMEL1)
WRITE(23) (A(II),II=INDR(35),INDR(35)+NGAU*NUMEL3)
WRITE(23) (A(II),II=INDR(11l),INDR(1l)+MNDOF)

REWIND 23

EMIT=MIT

ENIT=NIT

IF(JST.GT.1) THEN

EIST=IST

SPECU=SSPECU*DSD

ENDIF

CALL CLEAR(A(INDR(19)),MNDOF)

IST=0

IRESOL=2

CALL SOLVE(A(l),IA(1l),A(INDR(59)))

IST=0

ISP=0

IRESOL=1

PDTO0L~=1.D0

ISR=1
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ISTMIN=0
DTOLMIN=1.D0
IF(IFDIS.EQ.1) DIM2=DSD
450 IF(IST.NE.O) THEN
READ(23) (A(II),II=INDR(21),INDR{(21)+3*NGAU*NGAU*NUMEL2)
READ (23) (A(II),II=INDR(28),INDR(28)+NGAU*NGAU*NUMEL2)
READ(23) (A(II),II=INDR(30),INDR(30)+NGAU*NGAU*NUMEL2)
READ(23) (A(II),II=INDR(23),INDR(23)+NGAU*NGAU*NUMEL2)
READ(23) (A(II),II=INDR(34),INDR (34)+NGAU*NUMEL1)
READ(23) (A(II),II=INDR(35S),INDR(35)+NGAU*NUMEL3)
READ(23) (A(II),II=INDR(11l),INDR({11)+MNDOF)
REWIND 23
ENDIF
IF(ISP.EQ.1.AND.ISTMIN.EQ.0) ISP=2
IF(ISP.EQ.2) THEN
IF(IFDIS.EQ.2) DSD=PDSD
CZ=1.D0
IF(IFDIS.EQ.1) DLM2=DSD
ENDIF
ISQ=0
IST=0
DS=DS*CZ
IF(IFDIS.EQ.2) THEN
DSD=DSD*CZ
SPECU=SSPECU*DSD*SCAL
ELSE
DLM2=DLM2*CZ*SCAL
ENDIF
DTOL=1.D0
DLM1=0.D0
CZ=1.D0
CALL CLEAR(A(INDR(3)), (MNNE*MNDOFN) **2)
CALL CLEAR (A(INDR(4)), MNNE*MNDOFN)
CALL CLEAR(A(INDR(7)), MWNE*NDIM)
CALL CLEAR(A(INDR(8)), MNNE*MNDOFN)
CALL CLEAR(A(INDR(10)) ,MNDOF)
CALL CLEAR(A{INDR(14)),MNDOF)
CALL CLEAR (A(INDR(15)),MNDOF)
CALL CLEAR(A(INDR(16)),MNDOFE)
CALL CLEAR(A(INDR(17)),MNDOFE)
CALL CLEAR(A(INDR(19)),MNDOF)
CALL CLEAR(A(INDR(20)),MNDOF)

Cc

C..... ITERATION

C

500 IST=IST+1
IF(ISP.GT.12) THEN
WRITE (50, 2700)
2700 FORMAT(/,SX, 'CONVERGENCE IS NOT ACCOMPLISHED', /)

STOP
ENDIF
PDLM2=DLM2
DDTOL~=DTOL
IF(IST.EQ.1l) THEN
NDUM=1

C

C.....GET A WORKING COPY OF DP

C

CALL AEBC(A(INDR(6)),A(INDR(9)),A(INDR(38)),
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* A(INDR(39)+ICYL-1),A(INDR(40)+ICYL-1) , NN*MNDOFN)

c
C.ou.n. SOLVE (ONLY BACKSUBSTITUTION)
c
CALI, SOLVE(A(1l),IA(1l),A(INDR(59)))
c
C.....GET A COPY OF DUl
c
CALL, AEB(A(INDR(14)),A(INDR(2)), NN*MNDOFN)
ENDIF
IF(IST.GE.2.AND.ISP.LE.1.AND.IFDIS.EQ.2) THEN
IRESOL=0
C
Covunn GET A WORKING COPY OF DP
c
CALL AEBC(A(INDR(6)),A(INDR(9)),A(INDR(38)),
* A(INDR(39)+ICYL-1),A(INDR(40)+ICYL-1) , NN*MNDOFN)
c
Cournn SOLVE (ONLY BACKSUBSTITUTION)
c
CALL SOLVE(A(1),IA(1),A(INDR(59)))
c
C.ovvnn GET A COPY OF DUL
c
CALL AEB(A(INDR(14)),A(INDR(2)),NN*MNDOFN)
ENDIF
IRESOL=1
IF(IFDIS.EQ.1.AND.ISP.LE.1) THEN
TIRESOL=0
ELSE
IRESOL=1
ENDIF
c
C.....GET A WORKING COPY OF DR
c
CALL AEB(A(INDR(6)),A(INDR(11l)),NN*MNDOFN)
c
C.....SOLVE (ONLY BACKSUBSTITUTION)
c
CALL SOLVE(A(1),IA(l),A(INDR(59)))
c
Covnnn GET A COPY OF DU2
c
CALL AEB(A(INDR(15)),A(INDR(2)), NN*MNDOFN)
IF(IFDIS.EQ.2) THEN
CALL DISPSUB(A(INDR(14)),A(INDR(15)),SPECU,
* DST, MNDOF, DS, DSD, SSPECU, DLM1, DIM2, NUDOF)
ENDIF
c
C.....COMPARING P WITH R
C

IF(IFDIS.EQ.1) THEN
CALL COMPFC(A(INDR(9)),A(INDR(38)),
A(INDR(39)+ICYL-1),A(INDR(40)+ICYL-1),
A(INDR(14)),A(INDR(15)),MNDOF, DLM1, DIM2,
A(INDR(19)),A{INDR(20)),NUDOF,
SPECU, SPECP, A(INDR(11) ) ,DDTOL, IA(INDI(2)),
DTOL1,DTOL2, A(INDR(18)))

* % % * %
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ELSE

CALL COMP(A(INDR(9)),A(INDR(38)),
A(INDR(39)+ICYL-1),A(INDR(40)+ICYL-1),
A(INDR(14)),A(INDR(15)),MNDOF, DLM1, DLM2,
A(INDR(19)),A(INDR(20)),NUDOF,
SPECU, SPECP,A(INDR(11)),DDTOL, IA(INDI(2)),
DTOL1, DTOL2,A(INDR(18)))

ENDIF

DTOL=DTOL2

* % % ¥ *

C..... CHECK TOLERANCE

IF(ISP.EQ.0) THEN
IF(JTOL.LI.DTOLMIN.AND.DTOL.LE.0.1D0) THEN
ISTMIN=IST

DTOLMIN=DTOL

ENDIF

IF(ISP.LE.1.AND.IST.GE.5.AND.DDTOL.LT.DTOL.AND.
* DTOL.GT.10.D0O*TOL) THEN

ISQG=ISQ+1

IF(ISQ.EQ.3) THEN

WRITE(*,2100) IST,DTOL

ISP=IsP+1

IRESOL=0

GOTO 450

ENDIF

ENDIF

IF(IST.GE.5.AND.DTOL2.GT.0.9D0) THEN
WRITE(*,2100) IST,DTOL

ISP=ISP+1

IF(IFDIS.EQ.1) CZ=0.001D0
IF(IFDIS.EQ.1.AND.ISP.EQ.2) ISP=3
IRESOL~=0

GOTO 450

ENDIF

IF(ISP.LE.1.AND.IST.GE.MIT.AND.DTOL.GT.TOL) THEN
WRITE (*,2100) IST,DTOL

ISP=ISP+1

IF(IFDIS.EQ.1l) CZ=0.001DO
IF(IFDIS.EQ.1.AND.ISP.EQ.2) ISP=3

IRESOL~0

GOTO 450

ENDIF

ELSEIF(ISP.EQ.2) THEN
IF(IST.GE.5.AND.DTOL2.GT.0.9D0) THEN
WRITE(*,2100) IST,DTOL
ISP=ISP+1
IF(IFDIS.EQ.1l) CZ=0.001D0
IF(IFDIS.EQ.1.AND.ISP.EQ.2) ISP=3
IRESOL~0
GOTO 450
ENDIF
ENDIF
2100 FORMAT(/,5X, 'ITERATION NO = ',I5,5X, 'TOLERANCE = ',D13.6)
C
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C.....UPDATE THE INCREMENTS OF LOAD & DISPLACEMENT

c

CALL UPDT(A(INDR(1)),A(INDR(3)),A(INDR(5)),A(INDR(7)),
IA(INDI(3)), IA(INDI(10)),IA(INDI(5)),A(INDR(21)),
NDIM, NN, NUMEL, NMAT1, NMAT2 , MNDOFN, MNNE , MNCM, MNDOFE , MNDOF,
NGAU, A(INDR(12)) ,A(INDR(8)),
A(INDR(18)),A(INDR(10)),A(INDR(1l1)),A(INDR(17)),
IA(INDI(2)),A(INDR(19)),A(INDR(20)),A(INDR(16)),
A(INDR(14)),A(INDR(15)),DIM2,
IA(INDI(1)),IA(INDI(4)),IA(INDI(9)),
A(INDR(4)),A(INDR(23)),A(INDR(26)) ,A(INDR(28)),
A(INDR(30)),A(INDR(24)),NUMEL]1,NUMEL2, NUMEL3,
A(INDR(32)),A(INDR(34)),A(INDR(35)),
IA(INDI(11)),IA(INDI(12)),ICOMP,A(INDR(13)),
A(INDR(33)),IA(INDI(14)), IARC,IBAU,ISTL)

* % % & % % % % % A ¥ %

IF(ISP.EQ.1.AND.IST.EQ.ISTMIN) GOTO 600
IF(ISP.LE.1.AND.IST.GE.5.AND.DDTOL.LT.DTOL.AND.
* DTOL.LT.10.DO*TOL) GOTO 600
IF(ISP.GE.2.AND.DDTOL.LT.DTOL.AND.DTOL.LT.TOL) THEN
GOTO 600
ENDIF
C
C.....CHECK CONVERGENCE
Cc
IF(ISP.GE.2) THEN
IF(IST.EQ.MIT) THEN
GOTO 600
ELSE
GOTO 500
ENDIF
ENDIF
IF(DTOL.GT.TOL) GOTO 500

C..... CHECK TARGET DISP. OR FORCE EACH LOAD CYLCE

600 IF(IFDIS.EQ.2) THEN
NDUM=INDR (12) +NUDOF- 1
NNDUM=INDR (19 ) +NUDOF- 1
SHST=A (NDUM) +A (NNDUM)
IF(SCAL.EQ.1.D0) THEN
IF (TFORCE.GT. PFORCE . AND.TFORCE.LT.SHST) THEN
SCAL=DABS (TFORCE - PFORCE) /DABS (SHST - PFORCE)
CZ=1.D0
IRESOL=0
GOTO 450
ELSEIF (TFORCE.LT. PFORCE.AND. TFORCE.GT.SHST) THEN
SCAL=DABS (TFORCE- PFORCE) /DABS (SHST- PFORCE)
CZ=1.D0
IRESOL=0
GOTO 450
ENDIF
ENDIF
ELSEIF(IFDIS.EQ.1) THEN
NDUM=INDR ( 18) +NUDOF - 1
NNDUM=INDR (20 ) +NUDOF- 1
SHST=A (NDUM) +A (NNDUM)
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IF(SCAL.EQ.1.D0) THEN

IF (TFORCE.GT.PFORCE.AND. TFORCE.LT.SHST) THEN
SCAL~=DABS (TFORCE- PFORCE) /DABS (SHST - PFORCE)
CZ=1.D0

IRESOL=0

GOTO 450
ELSEIF (TFORCE.LT.PFORCE.AND. TFORCE.GT.SHST) THEN

SCAL=DABS (TFORCE - PFORCE) /DABS (SHST- PFORCE)

CZ=1.D0
IRESOL=0
GOTO 450
ENDIF
ENDIF
ENDIF
PFORCE=SHST
ISP=0
WRITE (*,2400) JST, IST,DSD
2400 FORMAT(/,5X,'STEP NO = ',I5,10X, 'COUNT = ',1I5,5X,D13.5)
C
Civenn COMPUTE MEMBER LOADS AND DISPL.
c
CALL MODIFX(A(INDR(18)),A(INDR(20)),A(INDR(18)),NN,NDIM)
CALL MODIFX(A(INDR(12)),A(INDR(19)),A(INDR(12)),NN, NDIM)
C
Covvnn PRINT RESULTS (DISPLACEMENTS/ROTATIONS)
c
CALL PRNT(A(INDR(12)),A(INDR(18)),NN,MNDOFN, DTOL, NUDOF,
* A(INDR(11)))
c
Covnnn COMPUTE AND PRINT STRESSES AND STRAINS
c

CALL STRESS(A(INDR(1l)),A(INDR(5)),A(INDR(7)),
IA(INDI(3)),IA(INDI(10)),IA(INDI(5)) ,A(INDR(21)),

*

* NDIM, NN, NUMEL, NMAT1, NMAT2 , MNDOFN, MNNE, MNCM, MNDOFE,,
* MNDOF, NGAU, A(INDR(12) ) ,A(INDR(8)) ,A(INDR(17)),

* IA(INDI(1)),IA(INDI(2)),IA(INDI(4)),IA(INDI(9)),
* A(INDR(23)),A(INDR(26)),A(INDR(28)),

* A(INDR(30)),A(INDR(24)),NUMEL1,NUMEL2, NUMEL3,

* A(INDR(32)),A(INDR(34)),A(INDR(35)), IA(INDI(11)),
* IA(INDI(12)),ICOMP,A(INDR(13)),SHDUM,

* A(INDR(33)),IA(INDI(14)),IARC,IRAU, ISTL)
EEIST=IST

IF(EEIST.LE.EIST.AND.EIST.LE.ENIT) THEN

CON2=2.D0

ELSE

CON2=1.DO0

ENDIF

WRITE (40) (A(II),II=INDR(18),INDR(18)+MNDOF)

WRITE(40) (A(II),II=INDR(10),INDR(10)+MNDOF)

WRITE(40) (A(II),II=INDR(11l),INDR(1l1l)+MNDOF)

WRITE (40) (A(ITI),II=INDR(12),INDR(12)+MNDOF)

WRITE(40) (A(II),II=INDR(21),INDR(21)+3*NGAU*NGAU*NUMEL2)
WRITE(40) (A(II),II=INDR(23),INDR(23)+NGAU*NGAU*NUMEL2)
WRITE(40) (A(II),II=INDR(24),INDR(24)+28*NGAU*NGAU*NUMEL2)
WRITE (40) (A(II),II=INDR(26),INDR(26) +2*6*NGAU*NGAU*NUMEL2)
WRITE (40) (A(II),II=INDR(28),INDR(28)+NGAU*NGAU*NUMEL?2)
WRITE(40) (A(II),II=INDR(30),INDR(30)+NGAU*NGAU*NUMEL2)
WRITE (40) (A(II),II=INDR(32),INDR(32)+6*NGAU*NUMEL1)
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WRITE (40) (A(II),II=INDR(33),INDR(33)+11*NGAU*NUMEL3)
WRITE(40) (A(II),II=INDR(34),INDR (34)+NGAU*NUMEL1)
WRITE(40) (A(II),II=INDR(3S),INDR (35)+NGAU*NUMEL3)
WRITE(41) JST,IST,ICYL

WRITE(41) DS, CON2,DSIG,CZ,SSDU, SSDP, PDSD
WRITE(41) SSPECU,SSDUP, SSDPP, DDTOL, PFORCE

REWIND 40

REWIND 41

IF(JST.EQ.NS) STOP

IF(SCAL.EQ.1.D0) GOTO 1000

CONTINUE

RETURN

END

SUBROUTINE FCLEAR (NFILE,NT)
IMPLICIT REAL*8 (A-H,0-2)
COMMON /CONSTS/ ZERO, ONE, TWO
DO 100 I=1,NT

WRITE (NFILE) ZERO

CONTINUE

REWIND NFILE

END

SUBROUTINE DISPSUB(DUL,DU2, SPECU,
* DST, MNDOF, DS, DSD, SSPECU, DLM1, DLM2, NUDOF)
IMPLICIT REAL*8 (A-H,O-Z)

COMMON /ITRN/ JST,IST

DIMENSION DUL (MNDOF) , DU2 (MNDOF)

IF(IST.EQ.1) THEN

DIM2=(SPECU-DU2 (NUDOF) ) /DU (NUDOF)

DS=DSQRT (SPECU*SPECU/SSPECU/SSPECU+DLM2*DIM2)
ELSE

DLM2=-DU2 (NUDOF') /DUl (NUDOF)

ENDIF

RETURN

END

SUBROUTINE AEBC(A,B, C, FB, FC,N)
IMPLICIT REAL*8 (A-H,O-Z)
DIMENSION A(N),B(N),C(N)

DO 10 I=1,N
A(I)=B(I)*FB+C(I)*FC

CONTINUE

RETURN

END

SUBROUTINE AEB(A, B, N)
IMPLICIT REAL*S (A-H,0-Z)
DIMENSION A(N),B(N)

DO 10 I=1,N

A(I)=B(I)

CONTINUE

RETURN

END

BLOCK DATA

IMPLICIT REAL*8 (A-H,0-Z)
COMMON /CONSTS/ ZERO, ONE, TWO
COMMON /XGWGT/ XG(4,4) ,WGT(4,4)
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DATA ZERO, ONE, TWO/0.D0, 1.D0,2.D0/

MATRIX XG STORES GAUSS - LEGENDRE SAMPLING POINTS

DATA XG/ 0.Do, 0.DO, 0.D0, 0.D0, -.5773502691896D0,
1 .5773502691896D0, 0.DO, 0.Do, -.7745966692415D0, 0.DO,
2 .7745966692415D0, 0.Do0, -.B611363115941D0,
3 -.3399810435849D0, .3399810435849D0, .8611363115941D0 /

MATRIX WGT STORES GAUSS - LEGENDRE WEIGHTING FACTORS

DATA WGT / 2.D0O, 0.DO, ©0.DO, ©0.DO, 1.DO, 1.DO,
1 0.D0, 0.D0, .5555555555556D0, .8888888888889D0,

2 .5555555555556D0, 0.D0,  .3478548451375D0, .6521451548625D0,
3 .6521454548625D0,  .3478548451375D0 /

END

SUBROUTINE CLEAR (A, NA)
IMPLICIT REAL*8 (A-H,O-Z)
DIMENSION A(NA)

COMMON /CONSTS/ ZERO, ONE, TWO
DO 10 I=1,NA

A(I)=ZERO

CONTINUE

RETURN

END

SUBROUTINE ICLEAR(IA,NA)
IMPLICIT REAL*8 (A-H,0-Z)
DIMENSION IA(NA)

COMMON /CONSTS/ ZERO,ONE, TWO
DO 10 I=1,NA

IA(I)=0

CONTINUE

RETURN

END

SUBROUTINE MODIFX(X, U, XI,NN,NDIM)

IMPLICIT REAL*8 (A-H,0-Z)

DIMENSION X(NDIM,NN),U(NDIM,NN), XI (NDIM,NN)
DO 10 I=1,NN

DO 10 J=1,NDIM

XI(J,I)=X(J,I)+U(J,I)

RETURN

END

SUBROUTINE INEL(IELT, IELM,NNE, ICONN, NDOFN, NDOFE, NN, NUMEL, M\NE,
* NUMELL, NUMEL2 , NUMEL3, IEL1, IEL2, IEL3)

IMPLICIT REAL*8 (A-H,0-2)

DIMENSION IELT(NUMEL), IELM(NUMEL) , NNE(NUMEL) , ICONN (MNNE, NUMEL)

DIMENSION NDOFN({NN) , NDOFE (NUMEL) , IEL1 (NUMEL1) , IEL2 (NUMEL2)

DIMENSION IEL3(NUMEL3)

K1=0

K2=0

K3=0

DO 20 IEL~l,NUMEL

READ(S,*) K,IELT(K),IELM(K),NNE(K), (ICONN(J,K),Jd=1,NNE(K))

IF (IELT(K) .EQ.1) THEN

K1=Ki+1
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IEL1(K)=K1

ENDIF

IF(IELT(K) .EQ.2) THEN

K2=K2+1

IEL2 (K)=K2

ENDIF

IF(IELT(K) .EQ.3) THEN

K3=K3+1

IEL3 (K)=K3

ENDIF

NDOFE (K) =0

DO 20 J=1,NNE(K)

NDOFE (K) =NDOFE (K) +NDOFN ( ICONN (J, K) )
20 CONTINUE

RETURN

END

SUBROUTINE INMAT(CONSTM1, CONSTM2, NMATL, NMAT2, MNCM)
IMPLICIT REAL*8 (A-H,0-Z)
DIMENSION CONSTMI1 (MNCM,NMAT1) , CONSTM2 (MNCM, NMAT2)
DO 10 IMAT=1,NMAT1
READ (5, ¥) NCM, (CONSTM1 (ICM, IMAT) , ICM=1, NCM)
10 CONTINUE
DO 20 IMAT=1,NMAT2
READ(5, *) NCM, (CONSTM2 (I(M, IMAT) , ICM=1, NCM)
20 CONTINUE
RETURN
END

SUBROUTINE INNOD (X, NDOFN, IS,NDIM, NN, MNDOFN)
IMPLICIT REAL*8 (A-H,0-Z)

DIMENSION X {NDIM,NN)

DIMENSION NDOFN{NN) , IS (MNDOFN,NN)

DO 10 I=1,NN

READ(S, *) K, (X(J,K),J=1,NDIM),
* NDOFN(K) , (IS(J,K),J=1,NDOFN(K) )

10 CONTINUE
RETURN
END

SUBROUTINE LOAD(P1, P2, NDOFN, NN, MNDOFN)
IMPLICIT REAL*8 (A-H,0-2)
DIMENSION NDOFN (NN)
DIMENSION P1(1),P2(1)
CALL CLEAR(P1l, MNDOFN*NN)
CALL CLEAR (P2, MNDOFN*NN)

10 READ(S5,*) NODE
IF(NODE.NE.-999999) THEN
I1=(NODE-1) *MNDOFN+1
I12=I1+NDOFN (NODE) -1
READ(S5,*) (P1(I),I=I1,I2)
GO TO 10
ENDIF

100 READ(5,*) NODE
IF(NODE.NE. -999999) THEN
I1=(NODE- 1) *MNDOFN+1
I12=I1+NDOFN (NODE) -1
READ(5,*) (P2(I),I=I1,I2)
GO TO 100
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ENDIF
RETURN
END

SUBROUTINE NONE(ISOL,NS,NIT,MIT,TOL, ISYM,

* NRHS, EEFT, FFT, IARC, NCYCLE,

* CYLOAD, IBAU, ISTL, MNDOFN, FLD1, FLD2, NUDOF, IFDIS)
IMPLICIT REAL*8 (A-H,0-Z)
DIMENSION CYLOAD(NCYCLE), FLD1 (NCYCLE) , FLD2 (NCYCLE)
DIMENSION NUDOF (NCYCLE) , IFDIS (NCYCLE)

NS: NO OF STEP
MIT: MAX NO OF ITERATION
TOL: TOLERANCE
ISYM=1 SYMMETRIC SOLVER
3 : UNSYMMETRIC SOLVER
NRHS=1 (DEFAULT): NO. OF RIGHT HAND SIDE
IARC=1:PRINCIPAL STRESS AND STRAIN AXES COINCIDE
2: NOT
IBAU=1: BILINEAR
2: BAUSCHINGER EFFECT
ISTL~=1:REAL STEEL LAYER
2:EQUIVALENT STEEL LAYER
IFDIS=1:FORCE CONTROL
2:DISPLACEMENT CONTROL

READ(5, *) ISOL

READ(5, *) NS,MIT,TOL

READ(5,*) ISYM,NRHS

READ (5, *) EEFT,FFT

READ (5, *) IARC,IBAU, ISTL

NIT=MIT

DO 100 I=1,NCYCLE

READ(5,*) IFDIS(I),NODE,NNUDOF,CYLQAD(I),FLD1(I),FLD2(I)
NUDOF (I)=(NODE- 1) *MNDOFN+NNUDOF

CONTINUE

RETURN

END

SUBROUTINE COMP(DPl,DP2, FLD1, FLD2,DU1, DU2, MNDOF, DIM1, DIM2,
A DDU, DDP, NUDOF, SPECU, SPECP, DR,
* DDTOL, IS, DTOL1,DTOL2, P)

IMPLICIT REAL*8 (A-H,0-Z)

COMMON /ITRN/ JST,IST

COMMON /CNTL1/ TAB

DIMENSION DP1 (MNDOF')

DIMENSION DP2 (MNDOF) ,DR (MNDOF) , IS (MNDOF), P (MNDOF)
DIMENSION DUl (MNDOF) ,DU2 (MNDOF) , DDU (MNDOF) , DDP (MNDOF)
CP1=0.D0

CP2=0.D0

CD1=0.D0

CD2=0.D0

CR1=0.D0

CR2=0.D0

DO 100 I=1,MNDOF

DDU(I)=DDU(I)+DLM2*DUL (I)+DU2(I)

DDP (I)=DDP(I)+DIM2* (DP1(I)*FLD1+DP2(I) *FLD2)
CONTINUE

DO 200 TI=1,MNDOF

156



IF(IS(I).BEQ.0) THEN
CP1=CP1+ (DLM2+*DU1 (I)+DU2(I))* (DLM2*DUL (I) +DU2(I))
CP2=CP2+DDU(I) *DDU(I)
CD1=CD1+DR(I) *DR(I)
CD2=CD2+DDP(I) *DDP (I)
ENDIF
200 CONTINUE
DTOL2=DSQRT(CP1) /DSQRT (CP2)
DTOL1=DSQRT{CD1) /DSQRT (CD2)
WRITE (50,7500) JST,TAB, IST,TAB,DIOLL, TAB, DTOL2
7500 FORMAT(I5,Al,I5,5(Al,E12.6))
IF(IST.EQ.1) THEN
DTOL1=1.D0
DTOL2=1.D0
ENDIF
RETURN
END

SUBROUTINE COMPFC(DPl,DP2, FLD1, FLD2,DUl, DU2, MNDOF, DIM1, DIM2,
* DDU, DDP, NUDOF, SPECU, SPECP, DR,
* DDTOL, IS, DTOL1, DTOL2, P)

IMPLICIT REAL*8 (A-H,0-2)

COMMON /ITRN/ JST,IST

COMMON /CNTL1/ TAB

DIMENSION DPL {MNDOF)

DIMENSION DP2 (MNDOF), DR (MNDOF) , IS (MNDOF), P (MNDOF)

DIMENSION DUL (MNDOF) ,DU2 (MNDOF) , DDU (MNDOF) , DDP (MNDOF)

CP1=0.D0

CP2=0.D0

CD1=0.D0

€D2=0.D0

CR1=0.D0

CR2=0.D0

DO 100 I=1,MNDOF

IF(IST.EQ.1) THEN

DDU(I)=DDU{I)+DLM2*DUl(I)

DDP (I)=DDP(I)+DILM2* (DP1(I) *FLD1+DP2(I) *FLD2)

ELSE

DDU(I)=DDU(I) +DU2(I)

ENDIF

100 CONTINUE

DO 200 I=1,MNDOF

IF(IS(I).EQ.0) THEN

CP1=CP1+DU2(I) *DU2(I)

CP2=CP2+DDU(I) *DDU(I)

CD1=CD1+DR(I) *DR(I)

CD2=CD2+DDP(I) *DDP(I)

ENDIF

200 CONTINUE

DTOL2=DSQRT (CP1) /DSQRT (CP2)

DTOL1=DSQRT (CD1) /DSQRT (CD2)

WRITE(50,7500) JST,TAB, IST,TAB,DIOL1,TAB, DTOL2

7500 FORMAT(IS,Al,I15,5(Al,E12.6))

IF(IST.EQ.1) THEN

DTOL1=1.D0

DTOL2=1.D0

ENDIF

RETURN

END
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SUBROUTINE MODIF (SM, ELRHS, ELEM, P, IS, NDOFN, ICONN,
* NNE, NDOF, NN, MNDOFN, IEL)
IMPLICIT REAL*8 (A-H,0-Z)
DIMENSION SM (NDOF,NDOF) , ELRHS (NDOF)
DIMENSION P (MNDOFN,NN)
DIMENSION IS (MNDOFN,NN), TCONN(NNE) ,NDOFN (NN)
DIMENSION ELEM(1)
COMMON /CONSTS/ ZERO, ONE, TWO
COMMON /CNTT./ ISYM,NUMEL, IRESOL, IDUM(26)
K=0
DO 30 I=1,NNE
NODE=TCONN(I)
DO 30 J=1,NDOFN (NODE)
K=K+1
IF (IS (J,NODE) .BQ.0) THEN
ELRHS (K) =ELRHS (K) +P (J, NODE)
P (J, NODE) =ZERO
EISE
DISP=P (J, NODE)
IF(ISYM.EQ.1) THEN
DO 10 I=1,K
ELRHS (L) =ELRHS (L) -SM(L, K) *DISP
SM(L, K) =ZERO
10 CONTINUE
DO 20 L=K,NDOF
ELRHS (L) =ELRHS (L) -SM(K, L) *DISP
SM(K, L) =ZERO
20 CONTINUE
EISE
DO 15 I~1,NDOF
ELRHS (L) =ELRHS (L) -SM(L, K) *DISP
SM(L, K) =ZERO
SM(K, L) =ZERO
15 CONTINUE
ENDIF
SM(K, K) =ONE
ELRHS (K)=DISP
ENDIF
30 CONTINUE
K=0
IF(IRESOL.EQ.1) GOTO 150
DO 48 J=1,NDOF
TF(ISYM.BEQ.1) THEN
IK=J
DO 40 I=1,IK
K=K+1
ELEM (K) =SM(T, J)
40 CONTINUE
ELSE
IK=NDOF
pO 45 I=1,IK
K=K+1
ELEM (K) =SM(J, I)
45 CONTINUE
ENDIF
48 CONTINUE
150 DO 50 I=1,NDOF
K=K+1
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ELEM(K) =ELRHS (I)
CONTINUE

RETURN

END

SUBROUTINE PICK(X,Y,ICONN, NNE, NDIM,NN)
IMPLICIT REAL*8 (A-H,0-Z)
DIMENSION X(NDIM,NN)
DIMENSION Y (NDIM,NNE)
DIMENSION ICONN (NNE)

DO 10 J=1,NNE
NODE=ICONN (J)

DO 10 I=1,NDIM

Y (I,J)=X(I,NODE)
CONTINUE

RETURN

END

SUBROUTINE PREOUT(INTA,IEL,N, IA, IB)
IMPLICIT REAL*8 (A-H,0-Z)

DIMENSION INTA(1)

DIMENSION IA(l),IB(1)

COMMON /INDS/ INDR(60),INDI (30)

COMMON /DIMS/ MNCM, MNDOFN, MNNE, NDIM, NMATL, NMAT2 , NN, MNDOFE,, MNDOF,
* NUMEL1,NUMEL2, NUMEL3, ICOMP, NGAU, IARC, IBAU, ISTL
J=INDI(8)+MNNE* (IEL-1)-1

DO 10 I=1,N

J=J+1

INTA(J)=IB(I)

CONTINUE

RETURN

END

SUBROUTINE PREP(IN, IA,NNE, NDOFN, ICONN,NUMEL, NN, MNNE)
IMPLICIT REAL*8 (A-H,0-2)

DIMENSION IN(1),IA(1)

DIMENSION NNE (NUMEL) , NDOFN (NN) , TCONN (MNNE , NUMEL)
K=0

L=0

DO 10 I=1,NUMEL

K=K+1

IN(K)=NNE(I)

DO 10 J=1,NNE(I)

L=L+1

NODE=ICONN({(J, I)

IA(L)=10*NODE+NDOFN (NODE)

CONTINUE

RETURN

END

SUBROUTINE PRNT (U, P, NN, MNDOFN, DTOL, NUDOF, DR)

IMPLICIT REAL*8 (A-H,0-Z)

CoMMON /ITRN/ JST,IST

COMMON /CNTL1/ TAB

DIMENSION U(MNDOFN,NN), P(MNDOFN, NN) , DR (MNDOFN, NN)

DO 20 I=1,NN

WRITE (43) (U(IN,I),IN=1,MNDOFN)}, (P(IN,I),IN=1,MNDOFN)
CONTINUE

NODE=NUDOF/MNDOFN+ 1
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IDOF=NUDOF- (NODE- 1) *MNDOFN

WRITE (51,7500) JST, TAB,U(IDOF,NODE),TAB, P(IDOF,NODE), TAB,
* DTOL

FORMAT(I5,4 (Al,E12.6))

RETURN

END

SUBROUTINE SOLIN(A, IA, IEL, IFG,NRHS, NUMDES, LDEST, ELEM)

IMPLICIT REAL*8 (A-H,0-Z)

DIMENSION A(1l),IA(1)

DIMENSION LDEST(1),ELEM(1)

COMMON /INDS/ INDR(60),INDI(30)

COMMON /DIMS/ MNCM, MNDOFN, MNNE, NDIM, NMAT1, NMAT2, NN, MNDOFE , MNDOF,
* NUMEL1, NUMEL2, NUMEL3, ICOMP, NGAU, IARC, IBAU, ISTL
NUMDES=IA(INDI (5) +IEL- 1)

J=INDI (8) +MNNE* (IEL-1) -1

DO 10 I=1,NUMDES

J=J+1

IDEST(I)=IA(J)

CONTINUE

IF(IFG.EQ.1) RETURN

CALL STIFF(A(INDR(1)),A(INDR(3)),A(INDR(5)),A(INDR(7)),
IA(INDI(3)),IA(INDI(10)),IA(INDI(5)),A(INDR(21)),
NDIM, NN, NWMEL, NMAT1, NMAT2 , MNDOFN, MNNE , MNCM, MNDOFE , MNDOF',
NGAU, ELEM, IEL, A{INDR(12) ) ,A(INDR(8) ), IA(INDI (1)),
IA(INDI(2)),IA(INDI(4)),IA(INDI(9)),A(INDR(4)),
A(INDR(6)),A(INDR(23)),A(INDR(26)),A(INDR(24)}),
A(INDR(28)),A{INDR(30)),NUMEL1, NUMEL2, NUMEL3,
A(INDR(32)),A(INDR(34)) ,A(INDR(35)),IA(INDI(1l1)),
IA(INDI(12)),ICOMP,A(INDR(13)),A(INDR(19)),
A(INDR(33)),IA(INDI(14)),IARC, IBAU, ISTL)

RETURN

END

* % o+ % * % ¥ ¥ #*

SUBROUTINE SOLOUT (A, IA, IEL,NDOF, NRHS, ELEM)
IMPLICIT REAL+*8 (A-H,0-Z)

DIMENSION ELEM(1)

DIMENSION A(1l),IA(l)

COMMON /INDS/ INDR(60), INDI (30)

COMMON /DIMS/ MNCM, MNDOFN, MNNE, NDIM, NMAT1, NMAT2, NN, MNDOFE , MNDOF,
* NUMEL1,NUMEL2, NUMEL3, ICOMP, NGAU, IARC, IBAU, ISTL
J=INDI (3) +MNNE* (IEL-1) -1

NNE=IA(INDI(5)+IEL-1)

M=0

DO 20 I=1,NNE

NODE=IA(J+I)

NDOFN=IA (INDI (1) +NODE-1)

K=INDR (2) +MNDOFN* (NODE-1) -1

DO 10 I=1,NDOFN

A(K+L)=ELEM(M+L)

CONTINUE

M=M+NDOFN

CONTINUE

RETURN

END

SUBROUTINE UPDT (X, ESM, CONSTM1, EX, TCONN, IELM, NNE, ST1,

* NDIM, NN, NUMEL, NMAT1, NMAT2 , MNDOFN, MNNE , MNCM,
* MNDOFE, MNDOF, NGAU, U, EU, P, R, DR, EEP, IS, DDU, DDP, EEU,
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DUl,DuU2, DILM2, NDOFN, IELT, NDOFE, ELRHS, AGP,
EMAX, RST1,RST2, PMAX, NUMELL, NUMEL2, NUMEL3,
EMAX1, RST, BRST, TEL1, IEL2, ICOMP, CONSTM2,
EMAX3, IEL3, IARC, IBAU, ISTL)
IMPLICIT REAL*8 (A-H,0-2)
COMMON /ITRN/ JST,IST
DIMENSION X(NDIM,NN) , EX (NDIM, MNNE)
DIMENSION ICONN (MNNE,NUMEL), IELM(NUMEL) , NNE (NUMEL)
DIMENSION CONSTMI (MNCM, NMAT1) , CONSTM2 (MNCM, NMAT2)
DIMENSION U(MNDOFN,NN) , ESM(MNDOFE, MNDOFE)
DIMENSION EU(MNDOFN, MNNE) , IS (MNDOFN,NN)
DIMENSION EEP (MNDOFN,MNNE) , P (MNDOFN, NN) , R (MNDOFN, NN)
DIMENSION DR (MNDOFN, NN)
DIMENSION DDU(MNDOFN,NN), DDP (MNDOFN, NN) , EEU (MNDOFN, MNNE)
DIMENSION DUl (MNDOFN,NN),DU2 (MNDOFN, NN)
DIMENSION ST1 (3*NGAU*NGAU, NUMEL2) , AGP (NGAU*NGAU, NUMEL?2 )
DIMENSION RST1 (NGAU*NGAU, NUMEL2)
DIMENSION RST2 (NGAU*NGAU, NUMEL2) , ELRHS (MNDOFN, MNNE)
DIMENSION EMAX (2*6*NGAU*NGAU, NUMEL2)
DIMENSION PMAX (28*NGAU*NGAU, NUMEL2)
DIMENSION NDOFN (NN) , IELT (NUMEL) , NDOFE (NUMEL)
DIMENSION RST (NGAU,NUMELL) , BRST (NGAU, NUMEL3)
DIMENSION EMAX] (6*NGAU, NUMEL1) , EMAX3 (11*NGAU, NUMEL3)
DIMENSION IEL1 (NUMEL),IEL2 (NUMEL), IEL3 (NUMEL)
CALL CLEAR (R, MNDOFN*NN)
DO 20 IEL~1,NUMEL
CALL PICK(X,EX, ICONN(1,IEL),NNE(IEL), NDIM,NN)
DO 10 I=1,NNE(IEL)
NODE=ICONN (I, IEL)
DO 10 J=1, NDOFN (NODE)
EU(J, I)=U(J, NODE) +DDU(J, NODE)
EEU(J, I)=DLM2*DUl (J, NODE) +DU2 (J, NODE)
10 CONTINUE
IF(IELT(IEL) .EQ.1) THEN

* % %

..... LINE ELEMENT
IDUM=IELI1 (IEL)

CALL UPSS1 (EX, CONSTM1 (1, IELM(IEL)),EMAX1 (1, IDUM),
* NCM, IEL, EU, ELRHS, RST (1, IDUM) , ICOMP,
* NGAU, MNDOFN, MNNE, NDOFE (IEL) , NDIM, EEP, TBAU)

ELSEIF(IELT(IEL) .EQ.2) THEN
RECTANGULAR ELEMENT

IDUM=IEL2 (IEL)

CALL UPQD4 (EX, CONSTM1,ST1(1,IDUM),AGP (1, IDUM) , EMAX (1, IDUM),
RST1 (1, IDUM) ,RST2 (1, IDUM) ,MNCM, EU, IEL, EEP, EEU,
PMAX (1, IDUM) ,NMAT1, NMAT2, TELM(IEL),
ICOMP, ELRHS, CONSTM2, NGAU, MNDOFN, MNINE , MNDOFE, NDIM,
SHST, IARC, IBAU, ISTL)

* % % %

ELSEIF (IELT(IEL) .BQ.3) THEN
..... BOND-SLIP ELEMENT

IDUM=IEL3 (IEL)
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CALL UPBOND (EX,CONSTM1 (1, IEIM(IEL)), EMAX3(1, IDUM),
* NM, IEL, EU, ELRHS, BRST(1, IDUM) , ICOMP,
* NGAU, MNDOFN, MNNE, NDOFE (IEL) ,NDIM, EEP)
ENDIF
DO 30 I=1,NNE(IEL)
NODE=ICONN (T, IEL)
DO 30 J=1,NDOFN (NODE)
R(J, NODE)=R(J,NODE) +EEP(J, I)

30 CONTINUE

20 CONTINUE
DO 200 I=1,NN
DO 200 J=1,MNDOFN
IF(IS(J,I).EQ.0) THEN
DR(J, I)=(P(J,I)+DDP(J,I))-R(J,I)
ELSE
DR(J,I)=0.D0
ENDIF

200 CONTINUE

RETURN
END

SUBROUTINE STIFF (X, ESM, CONSTM1, EX, ICONN, IEIM,NNE, ST1,
NDIM, NN, NUMEL, NMAT1, NMAT2 , MNDOFN, MNNE , MNCM, MNDOFE, MNDOF,
NGAU, ELEM, IEL, U, EU, NDOFN, IS, IELT, NDOFE, ELRHS, P, AGP,
EMAX, PMAX, RST1, RST2, NUMEL1, NUMEL2, NUMEL3,
EMAX]1, RST, BRST, TEL1, IEL2, ICOMP, CONSTM2,
DDU, EMAX3, IEL3, IARC, IBAU, ISTL)

IMPLICIT REAL*8 (A-H,0-2)

COMMON /ITRN/ JST,IST

DIMENSION X (NDIM,NN), EX(NDIM,MNNE)

DIMENSION ESM(MNDOFE, MNDOFE)

DIMENSION ICONN (MNNE,NUMEL) , IELM(NUMEL) , NNE (NUMEL)

DIMENSION CONSTMI (MNCM, NMAT1) , CONSTM2 (MNCM, NMAT2)

DIMENSION ST1 (3*NGAU*NGAU,NUMEL2) , AGP (NGAU*NGAU, NUMEL:2)

DIMENSION U(MNDOFN,NN),RST (NGAU, NUMEL1) , DDU(MNDOFN, NN)

DIMENSION BRST (NGAU, NUMEL3)

DIMENSION EU(MNDOFN,MNNE) , RST) (NGAU*NGAU, NUMEL2)

DIMENSION NDOFN (NN) , IS (MNDOFN,NN) , RST2 (NGAU*NGAU, NUMEL2)

DIMENSION IELT(1),NDOFE(l),ELRHS(1),P(1)

DIMENSION EMAX (2+*6 *NGAU*NGAU, NUMEL2)

DIMENSION PMAX(28*NGAU*NGAU, NUMEL2)

DIMENSION EMAXI (6*NGAU, NUMEL1) , EMAX3 (11*NGAU, NUMEL3)

DIMENSION IELI1(NUMEL), IEL2 (NUMEL) , IEL3 (NUMEL)

CALL PICK(X,EX, ICONN(1,IEL),NNE{IEL), NDIM,NN)

DO 10 I=1,NNE(IEL)

NODE=TCONN (I, IEL)

DO 10 J=1,NDOFN (NODE)

EU(J, I)=U(J,NCDE)+DDU(J, NODE)

10 CONTINUE

IF(IELT(IEL) .EQ.1l) THEN

* % % % %

C
C.....LINE ELEMENT
C
IDUM=IELL (IEL)
CALL SF1(EX, CONSTM1 (1, IELM(IEL)),ESM, EMAX1(1,IDUM),
* NCM, IEL, EU, ELRHS, RST(1, IDWM) ,
* ICOMP, NGAU, MNDOFN, MNNE, NDOFE (IEL) , NDIM, IBAU)

ELSETF (IELT(IEL) .EQ.2) THEN
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RECTANGULAR ELEMENT

IDUM=IEL2(IEL)
CALL QUADS4 (EX, CONSTM1,ESM, ST1(1, IDWM) ,AGP (1, IDWM),
EMAX (1, IDUM) , MNCM, IEL, EU, ELRHS,
PMAX (1, IDUM),RST1 (1, IDUM),RST2(1, IDWM),
NMAT1,NMAT2, TELM(IEL), ICOMP, CONSTM2,
NGAU, MNDOFN, MNNE , MNDOFE,,
NDIM, IARC, IBAU, ISTL)
ELSEIF(IELT(IEL).EQ.3) THEN

* % % * *

..... BOND-SLIP ELEMENT

IDUM=IEL3 (IEL)
CALL SFBOND(EX,CONSTM1 (1, TELM(IEL)), ESM, EMAX3 (1, IDWM),
* NCM, IEL, EU, ELRHS, BRST' (1, IDWM) ,
* ICOMP, NGAU, MNDOFN, MNNE, NDOFE (IEL) , NDIM)
ENDIF

..... MODIFY ELEMENT STIFFNESS MATRIX FOR SUPPORT CONDITIONS

CALL MODIF(ESM, ELRHS, ELEM, P, IS, NDOFN,

* ICONN(1, IEL),NNE(IEL) ,NDOFE (IEL) ,NN,MNDOFN, IEL)
RETURN
END

SUBROUTINE STRESS (X, CONSTM1, EX, TCONN, IELM, NNE, ST1,
NDIM, NN, NUMEL, NMAT 1, NMAT2 , MNDOFN, MNNE,, MNCM, MNDOFE , MNDOF',
NGAU, U, EU, EEP, NDOFN, IS, IELT, NDOFE, AGP, EMAX,
RST1, RST2, PMAX, NUMEL1, NUMEL2 , NUMEL3,
EMAX1,RST, BRST, IEL1, IEL2, ICOMP, CONSTM2,
SHDWM, EMAX3, IEL3, IARC, IBAU, ISTL)
IMPLICIT REAL*8 (A-H,0-Z)
COMMON /ITRN/ JST,IST
COMMON /CNTL1/ TAB
DIMENSION X(NDIM,NN),EX(NDIM,MNNE)
DIMENSION ICONN (MNNE, NUMEL) , IELM (NUMEL) , NNE (NUMEL)
DIMENSION CONSTML (MNCM, NMAT1) , CONSTM2 (MNCM, NMATZ2)
DIMENSICN U(MNDOFN,NN)
DIMENSION EU(MNDOFN,MNNE), EEP (MNDOFE)
DIMENSION ST1(3*NGAU*NGAU, NUMEL2) , AGP (NGAU*NGAU, NUMEL2 )
DIMENSION RST1 (NGAU*NGAU,NUMEL2) , RST2 (NGAU*NGAU, NUMEL2)
DIMENSION NDOFN (NN), IS (MNDOFN, NN) , IELT (NUMEL) , NDOFE {NUMEL)
DIMENSION EMAX (2*6*NGAU*NGAU, NUMEL2)
DIMENSION PMAX (28*NGAU*NGAU, NUMEL2)
DIMENSION ASTRESS(3),ASTRAIN(3),P(2)
DIMENSION RST(NGAU, NUMEL1) , BRST (NGAU, NUMEL3)
DIMENSION EMAXI (6*NGAU, NUMEL1) , EMAX3 (11*NGAU, NUMEL3)
DIMENSION IELL(NUMEL), IEL2 (NUMEL), IEL3 (NUMEL)
PAI=2.DO*DASIN(1.D0)
DO 30 I=1,3
ASTRESS (I)=0.D0
30 ASTRAIN(I)=0.DO
DO 20 IEL~l,NUMEL
CALL PICK (X, EX, TOONN(1,IEL),NNE(IEL),NDIM,NN)
DO 10 I=1,NNE(IEL)
NODE=ICONN(I, IEL)
DO 10 J=1,NDOFN (NODE)

* % * % #*
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EU(J, I)=U(J,NODE)
10 CONTINUE
IF(IELT(IEL) .EQ.1l) THEN

IDUM=IEL1 (IEL)
CALL SS1(EX, CONSTMI (1, IEIM(IEL)),EMAX1 (1, IDUM),

* NCM, IEL, EU,RST(1, IDWM) ,

* ICOMP, NGAU, MNDOFN, MNNE , NDOFE (IEL) , NDIM, IBAU)
ELSEIF (IELT(IEL) .EQ.2) THEN

RECTANGULAR ELEMENT

NnnNnao

IDUM=IEL2 (IEL)

CALL EFQD4 (EX, CONSTM1,ST1 (1, IDUM),AGP (1, IDUM),EMAX(1,IDUM),
RST1(1,IDUM),RST2 (1, IDUM) , MNCM, EU, IEL, EEP,
ASTRESS, ASTRAIN, PMAX (1, IDUM) ,
NMAT1, NMAT2, TELM(IEL) , ICOMP,
CONSTM2, NGAU, MNDOFN, MNNE , MNDOFE, NDIM,
SHDWM, IEL, IARC, IBAU, ISTL)

ELSEIF(IELT(IEL) .EQ.3) THEN

* % % * *

C

C.....BOND-SLIP ELEMENT

C
IDUM=IEL3 (IEL})
CALL SSBOND(EX, CONSTM1(1,IEIM(IEL)),EMAX3(1, IDWM),

NCW, IEL, EU, BRST(1, IDW) ,
ICOMP,NGAU, MNDOFN, MNNE, NDOFE (IEL) , NDIM)
ENDIF
20 CONTINUE

RETURN
END

SUBROUTINE CNCLEAR
IMPLICIT REAL*8 (A-H,0-2)
COMMON/CNTL/IDUM(29)
DO 100 I=1,30
IDUM(I)=0
100 CONTINUE
RETURN
END

SUBROUTINE QUADS4 (XX, CONSTM1, S, ST1,AGP, EMAX,
NCM, NEL, EU, ELRHS, PMAX, RST1, RST2,
NMAT1, NMAT2, IELM, ICOMP, CONSTM2,
NGAU, MNDOFN, MNNE, MNDOFE , NDIM,
IARC, IBAU, ISTL)
IMPLICIT REAL*8(A-H,0-Z)
COMMON /CNTL/ ISYM, NUMEL, IRESOL, IIDUM (26)
COMMON /ITRN/ JST,IST
COMMON /XGWGT/ XG(4,4),WGT(4,4)
DIMENSION D(4,4),B(4,16),XX(NDIM, MNNE) , S(MNDOFE, MNDOFE)
DIMENSION DB(4)
DIMENSION CONSTMIL (NCM, NMAT1), STl (3,NGAU*NGAU) ,D1(3,3),D2(3,3)
DIMENSION CONSTM2 (NCM, NMAT2) , AGP (NGAU*NGAU)
DIMENSION EPSN(3),SIGM(4) ,EMAX(2*6,NGAU*NGAU) , EPS (3)
DIMENSION EU(MNDOFE) , ELRHS (MNDOFE),P(2),H(8)
DIMENSION RST1{NGAU*NGAU) , RST2 (NGAU*NGAU)
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DIMENSION PMAX (28, NGAU*NGAU), IREN(6)
DIMENSION US(6),YS(6),RS(6),AS(6),DS(6)

DIMENSION REP(6),

REPP(6)

CONSTM2 (1) = YOUNGS MODULUS

CONSTM2 (2) = POISSONS RATIO

CONSTM2 (3) = THICHNESS

CONSTM2 (4) = VOID

CONSTM2 (5) = UNIT WEIGHT

CONSTM2 (6) = ULTIMATE STRENGTH IN COMPRESSION
CONSTM2 (7) = INITIAL MODULUS IN COMPRESSION
CONSTM2 (8) = SECANT MODULUS IN COMPRESSION
CONSTM2 (9) = FINAL SECANT MODULUS IN COMPRESSION

CONSTM2 (10)
CONSTM2 (11)
CONSTM2 (12)
CONSTM2 (13)
CONSTM2 (14)
CONSTM2 (15)
CONSTM2 (16)
CONSTM2 (17)

CONSTM2 (18-21) = TYPE OF DISCRETE REINF. BARS AFFECTING

CONSTM1 (1)

= FINAL STRENGTH IN COMPRESSION
= ULTIMATE STRENGTH IN TENSION

= INITIAL MODULUS IN TENSION
SECANT MODULUS IN TENSION

FINAL SECANT MODULUS IN TENSION
FINAL STRENGTH IN TENSION

TYPE OF SMEARED STEEL 1

= TYPE OF SMEARED STEEL 2

TENSION STIFFENING

YIELD STRESS

CONSTM1 (2) = YOUNGS MODULUS

CONSTM1 (3)
CONSTML1 (4)
CONSTML1 (5)
CONSTM1 (6)
CONSTML (7)
CONSTML (8)

REINFORCEMENT RATIO

DIRECTION WITH RESPECT TO X AXIS
DIAMETER

AREA

STRAIN HARDENING STRAIN
ULTIMATE STRAIN

CONSTML (9) = ULTIMATE STRESS

CONSTM1 (10)
CONSTML (11)
CONSTML1 (12)
CONSTML (13)
CONSTML (14)

PAT=2.DO*DASIN(1.

= ULTIMATE BOND STRESS
FINAL BOND STRESS
BOND-SLIP 1
BOND-SLIP 2

FINAL BOND-SLIP

Do)

CALIL SCONS (CONSTM1, CONSTM2, YM, PR, THIC, NINT, UWT,
UsC, YOC, YSC, YFC, UFC, UST, YOT, YST, YFT, UFT,

IREN,US,YS,

NINT=NGAU
NDOF=MNDOFE

CALL CLEAR(ELRHS,

RS, AS, DS, NCM, IELM, NMAT1 , NMAT2)

NDOF)

IF(IRESOL.EQ.1l) RETURN

ITYPE=2
DO 30 I=1,MNDOFE
DO 30 J=1,MNDOFE
S(1,J)=0.D0

=0
DO 80 LX=1,NINT
RI=XG(LX, NINT)
DO 80 LY=1,NINT
SI=XG(LY,NINT)
KK=KK+1

EVALUATE DERIVATIVE OPERATOR B AND THE JACOBIAN DETERMINANT DET
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IF (ICOMP.EQ.2) THEN
CALL STDMS (XX, B, H,DET, RI, ST, XBAR, NEL, ITYPE, NDIM, MNNE)
ELSE
CALL STDM4 (XX, B,H, DET, RI,SI, XBAR,NEL, ITYPE, NDIM, MNNE)
ENDIF
IF (ITYPE.GT.0) XBAR=THIC
WI=WGT (LX, NINT) *WGT (LY, NINT) *XBAR*DET
DO 810 J=1,3
SIGM(J)=0.0D0
810 EPSN(J)=0.0D0
DO 815 J=2,MNDOFE, 2
JJ=J-1
EPSN(1)=EPSN(1) +B(1,JJ) *EU (JJ)
EPSN(2)=EPSN(2)+B(2,J ) *EU(J )
EPSN(3)=EPSN(3) +B(3,JJ) *EU(JJ) +B(3,J) *EU(J)
815 CONTINUE
c
C.....PRINCIPAL STRAINS
c
CC=(EPSN (1) +EPSN(2) ) *0.5D0
BB=(EPSN(1)-EPSN(2)) *0.5D0
DUM=AGP (KK)
EPSN(3)=EPSN(3) /2.D0
CALL PRINCIPAL (EPSN, P, AG, DUM)
EPSN(3)=EPSN(3) *2.D0
EPSN(1)=P(1)
EPSN(2)=P(2)
AGS=AG
EPS(1)=EPSN(1)
EPS(2)=EPSN(2)
950 CONTINUE
DO 955 I=1,6
IF(IREN(I).NE.G) THEN
REP(I)=CC+BB*DCOS (2.DO*AS(I))+EPSN(3) *DSIN(2.DO*AS (I)) /2.D0
REPP(I)=REP(I)
CALL REPST(REP(I),UST,YST,USC,YsC,
* AS(I),PMAX(1,KK),PMAX(9,KK),PMAX(17,KK))
ENDIF
955 CONTINUE

SMEARED REINFORCING STEEL IN AXIS 1

[ NeN?]

CALL, DMATS1(Dl,REPP(1),EMAX(1,KK),
* CONSTM1(1,IREN(1)),NCM,NMAT1, TREN(1),
* RST1 (KK) , UST, YST, IBAU, EPS, PMAX (1, KK) , USC, YSC, UFC, YFC)

SMEARED REINFORCING STEEL IN AXIS 2

Qa0

CALL, DMATS1 (D2, REPP(2), EMAX(7,KK),
* CONSTM1 (1,IREN(2)),NCM,NMAT1, TREN(2),
* RST2 (KK),UST, YST, IBAU, EPS, PMAX (1, KK) , USC, YSC, UFC, YFC)

CQONCRETE

Q00

CALL DMAT (D, AGS,EPS, CONSTM1, NCM, PMAX (1, KK) ,
* NMAT1, NMAT2, IELM, CONSTM2,
* AGP (KK) , AG, REP)
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ADD CONTRIBUTION TO ELEMENT STIFFNESS

DO 370 J=1,MNDOFE

DO 340 K=1,3

DB (K)=0.0D0

DO 340 L-1,3
DB(K)=DB(K) + (D(K,L) +D1 (K, L) +D2 (K, L) ) *B(L, J)
DO 360 I=1,MNDOFE
STIFF=0.0D0

DO 350 L~1,3
STIFF=STIFF+B(L, I) *DB(L)
S(I,J)=S(I,J)+STIFF*WT
CONTINUE

CONTINUE

RETURN

END

SUBROUTINE REPST(REP,UST, YST, USC, YSC,
AG, (MST, TMST, RMST)

IMPLICIT REAL*8 (A-H,0-Z)

DIMENSION TMST(8), RMST(8)

PAT=2.DO0*DASIN(1.DO)

ESC=DABS (USC/YSC)

EST=DABS (UST/YST)

CALL AGPICK (AG, KK, TH)

CALL FINMAX (AG, TMST,TM, KK, TH)

CALL REFPICK (AG, CMST, RMST, ESC, KK, TH, ECT)

IF(REP.LT. (TM+ECT)) REP=(TM+ECT)

RETURN

END

SUBROUTINE STDM4 (XX,B,H,DET,R,S,XBAR,NEL, ITYPE, NDIM, MNNE)
IMPLICIT REAL*8(A-H,0-2)

DIMENSION XX (NDIM,MNNE),B(4,16),H(8),P(2,4),XJ(2,2),XJI(2,2)
ITYPE=2

RP=1.0D0+R

SP=1.0D0+S

RM=1.0D0-R

SM=1.0D0-S

INTERPOLATTION FUNCTIONS
H(1)=0.25DO*RP*SP
H(2)=0.25DO*RM*SP
H(3)=0.25D0*RM*SM
H(4)=0.25D0*RP*SM
NATURAL COORDINATE DERIVATIVE OF THE INTERPOLATION FUNCTIONS

1. WITH RESPECT TO R
P(1,1)=0.25D0*SP
P(1,2)=-P(1,1)
P(1,3)=-0.25D0*SM
P(1,4)=-P(1,3)

2. WITH RESPECT TO S
P(2,1)=0.25DO*RP
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P(2,2)=0.25D0*RM
P(2,3)=-P(2,2)
P(2,4)=-P(2,1)

EVALUATE THE JACOBIAN MATRIX AT POINT (R,S)
10 DO 30 I=1,2
DO 30 J=1,2
DUM=0.0D0
DO 20 K=1,4
20 DUM=DUM+P(I,K)*XX(J,K)
30 XJ(I,J)=DUM
COMPUTE THE DETERMINANT OF JACOBIAN MATRIX AT POINT (R,S)
DET=XJ (1, 1) *XJ(2,2) -XJ (2, 1) *XJ (1, 2)
IF(DET.GT.0.00000001D0) GO TO 40
WRITE(50,2000) NEL
STOP
COMPUTE INVERSE OF THE JACOBIAN MATRIX
40 DUM=1.0DO0/DET
XJT (1, 1}=XJ(2,2) *DUM
XJI(1,2)=-XJ(1,2) *DUM
XJI(2,1)=-XJ(2,1) *DUM
XJI(2,2)=XJI(1, 1) *DUM
EVALUATE GLOBAL DERIVATIVE OPERATOR B
=0
DO 60 K=l,4
K2=K2+2
B(1,K2-1)=0.D0
B(1,K2 )=0.D0
B(2,K2-1)=0.D0
B(2,K2 )=0.D0
Do 50 I=1,2
B(1,K2-1)=B(1,K2-1)+XJI(1,I)*P(I,K)
50 B(2,K2 )=B(2,K2 )+XJI(2,I)*P(I,K)
B(3,K2 )=B(1l,K2-1)
60 B(3,K2-1)=B(2,K2 )
RETURN
2000 FORMAT (///'*** ERROR’,
1 52H ZERO OR NEGATIVE JACOBIAN DETERMINANT FOR ELEMENT (,I4,
2 1H) )
END

SUEROUTINE STDMS (XX, B, H,DET,R, S, XBAR,NEL, ITYPE, NDIM,
* MNNE)

IMPLICIT REAL*8(A-H,0-Z)

DIMENSION XX (NDIM,MNNE),B(4,16),H(8),P(2,8),XJ(2,2),XJI(2,2)
RP=1.0D0+R

SP=1.0D0+S

RM=1.0D0-R

SM=1.0D0-S

H(5) = 0.5DO*RP*RM*SP

H(6) = 0.S5DO*RM*SP*SM

H(7) 0.5D0*RP*RM*SM

168



H(8) = 0.5DO*RP*SP*SM
H(1l) = .25DO*RP*SP-0.5DO*H(5)-0.5DO*H(8)

H(2) = .25DO*RM*SP-0.5DO0*H(5)-0.5D0*H(6)
H(3) = .25DO*RM*SM-0.5D0O*H(6)-0.5DO*H(7)
H(4) = .25DO*RP*SM-0.5D0*H(7)-0.5DO*H(8)
P(1,1) = .25DO*SP*(2.DO*R+S)
P(1,2) = .25DO*SP*(2.DO*R-S)
P(1,3) = .25D0*SM* (2.DO*R+S)

P(1,4) = .25D0*SM* (2.DO*R-S)
P(1,5) = -R*SP

P(1,6) = -0.5D0*SP*SM

P(1,7) = -R*SM

P(1,8) = 0.5DO*SP*SM

P(2,1) = .25DO*RP*(2.D0*S+R)
P(2,2) = .25DO*RM#*(2.D0*S-R)
P(2,3) = .25DO*RM*(2.DO*S+R)
P(2,4) = .25DO*RP*(2.D0*S-R)
P(2,5) = 0.S5DO*RP*RM

P(2,6) = -S*RM

P(2,7) = -0.S5DO*RP*RM

P(2,8) = -S*RP

10 DO 30 I=1,2
DO 30 J=1,2
DUM=0.0D0
DO 20 K=1,8

20 DUM=DUM+P (I, K) *XX(J,K)

30 XJ(I,J)=DUM
DET=XJ(1,1)*XJ(2,2) -XJ (2, 1) *XJ(1,2)
IF (DET.GT.0.00000001D0) GO TO 40
WRITE(50,2000) NEL
STOP

40 DUM=1.0D0/DET
XJI(1,1)=XJ(2,2)*DUM
XJI(1,2)=-XJ(1,2)*DUM
XJI(2,1)=-XJ (2, 1) *DUM
XJI(2,2)=XJ(1, 1) *DUM
K2=0
DO 60 K=1,8
K2=K2+2
B(1,K2-1)=0.0D0
B(1,K2 )=0.0D0
B(2,K2-1)=0.0D0
B(2,K2 )=0.0D0
DO 50 I=1,2
B(1,K2-1)=B(1,K2-1)+XJI(1,I)*P(I,K)

50 B(2,K2 )=B(2,K2 )+XJI(2,I)*P(I,K)
B(3,K2 )=B(1,K2-1)

60 B(3,K2-1)=B(2,K2 )

RETURN
2000 FORMAT (10HO*** ERROR,
1 52H ZERO OR NEGATIVE JACOBIAN DETERMINANT FOR ELEMENT (,I4,
2 1H) )
END

SUBROUTINE DMAT (D, AG, EPSN, CONSTM1,NCM, PMAX,
* NMAT1,NMAT2, IELM, CONSTM2, AGP, AGE, REP)

IMPLICIT REAL*8(A-H,0-2)

COMMON /CL/ ISOL,ISP

COMMON /CNTL/ ISYM, IDUM(28)
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COMMON /ITRN/ JST,IST
DIMENSION CONSTM2 (NCM, NMAT2) , CONSTM1 (NCM, NMAT1)
DIMENSION D(4,4),EPSN(3),TP(3,3),TT(3,3),SST1(3)
DIMENSION US(6),YS(6),RS(6),AS(6),DS(6),REP(6)
DIMENSION PMAX(28),IREN(6)
PAT=2 .DO*DASIN(1.D0)
CALI, SCONS (CONSTM1, CONSTM2, YM, PR, THIC, NINT, UWT,
* Usc, YOC, YSC, YFC, UFC, UST, YOT, YST, YFT, UFT,
* IREN, US, YS, RS, AS, DS, NCM, IELM, NMAT1 , NMAT2)
IF(AG.GT.0.D0) AGI1=AG-PAI/2.D0
IF(AG.LE.0.DO) AG1=AG+PAI/2.D0
IF(AGE.GT.0.D0) AGE1=AGE-PATI/2.DO
IF(AGE.LE.0.D0) AGEl=AGE+PAI/2.DO
DO 10 I=1,3
SST1(I)=0.D0
DO 10 J=1,3
10 D(I,J)=0.DO
c
C.....INITIAL STIFFNESS
c
IF(JST.EQ.0.OR.ISP.GE.2) THEN
DUM=YOC/ (1.D0-PR¥*PR)
D{1,1)=DM
D(1,2)=DUM*PR
D(2, 1)=DUM*PR
D(2,2)=DUM
D(3,3)=YOC/2.D0/ (1.DO+PR)
RETURN
ENDIF
c
C....PRINCIPAL DIRECTION 1
C
CALL DSTRESS(EPSN(1),EPSN(2),USC, YOC, YSC, YFC, UFC,
* D(1,1),D(1,2),ISYM,
* uUsT, YOT, YST, YFT, UFT, US, YS, RS,
* AS,DS,AG,SST1(1),
* PMAX (1) , PMAX(9), PMAX(17) , PMAX(25), AGP,
* PMAX (2) , AGE, REP, IREN)
IF(D(1,1) .LE.0.DO) THEN
D(1,1)=Y0C/1.D3
ENDIF
c
C....PRINCIPAL DIRECTION 2
c
CALI, DSTRESS (EPSN(2),EPSN{1),USC, YOC, YSC, YFC, UFC,
D(2,2),D(2,1),IsYM,
UST, YOT, YST, YFT, UFT, US, YS, RS,
AS,DS,AGl,SST1(2),
PMAX{1l),PMAX(9),PMAX(17), PMAX(25) , AGP,
PMAX (2) ,AGEl, REP, IREN)
IF(D(2,2).LE.0.D0) THEN
D(2,2)=Y0C/1.D3
ENDIF

* % * % *

(o)
C....SHEAR MODULUS

(o]
700 IF(EPSN(1l).EQ.0.DO.AND.EPSN(2).EQ.0.D0) THEN

D(3,3)=Y0C/2.D0
ELSE
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IF (AG.EQ.AGE) THEN
D(3,3)=(SST1(1)-8ST1(2))
D(3,3)=D(3,3)/(2.D0* (EPSN(1) -EPSN(2)))

ELSE

DTH=AGE-AG
ADUM=0 . 5D0* (SST1{1) -SST1(2) ) *DCOS (2.D0*DTH)
BDUM=(EPSN (1) -EPSN(2) ) *DCOS (2.D0*DTH) +EPSN (3) *DSIN(2.D0*DTH)
D(3, 3) =ADUM/BDUM
ENDIF
ENDIF
IF(D(3,3).LE.0.D0) THEN
D(3,3)=YOC/1.D3
ENDIF
IF(D(3,3) .GT.YOC*1.D2) THEN
D(3,3)=YOC*1.D2
ENDIF

..... TRANSFORMATION MATRIX

20 TP(1, 1)=DQ0OS (AG) *DCOS (AG)
TP (1, 2)=DSIN (AG) *DSIN (AG)
TP (1, 3)=DSIN(AG) *DCOS (AG)
TP(2,1)=TP(1,2)
TP(2,2)=TP(1,1)
TP(2,3)=-TP(1,3)
TP(3,1)=-2.D0*TP(1,3)
TP(3,2)=2.D0*TP(1,3)
TP(3,3)=TP(1,1)-TP(1,2)
DO 100 II=1,3
DO 100 JJ=1,3
TT(II,JJ)=0.D0
DO 100 1J=1,3

100 TT(II,JJ)=TT(II,JJ)+D(II,1J)*TP(IJ,JJd)
DO 200 II=l,3
DO 200 JJ=1,3
D(II,JJ)=0.D0
DO 200 IJ=l1,3

200 D(II,JJ)=D(II,JJ)+TP(IJ,II)*TT(IJ,JJ)
RETURN
END

SUBROUTINE DSTRESS (EP, EPSN2, USC, YOC, YSC, YFC, UFC,

* D1,D2, ISYM, UST, YOT, YST, YFT, UFT, US, YS, RS, AS, DS,
BG,SST1, CMST, TMST, RMST, HS, AGP, CRRN, AGE, REP, IREN)

IMPLICIT REAL*8(A-H,0-Z)

COMMON /ITRN/ JST,IST

COMMON /CL/ ISOL,ISP

DIMENSION US(6),YS(6),RS(6),AS(6),DS(6)

DIMENSION PMAX(6),PMAX2(6),ES(30),STR(30),STIF(30)

DIMENSION TMST(8),RMST(8),HS(4),CRRN(4)

DIMENSION REP(6),IREN(6)

PAI=2.DO*DASIN(1.D0)

IF(AG.GT.0.D0) AGl=AG-PAI/2.DO

IF (AG.LE.0.D0) AGl=AG+PAI/2.D0

ESC=DABS (USC/YSC)

EST=DABS (UST/YST)

CALI, AGPICK(AG, KK, TH)

CALL AGPICK(AGL,KK1,TH1)

CALI, REFPICK (AG, CMST, RMST,ESC, KK, TH, ECT)
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CALL REFPICK(AG1, CMST, RMST, ESC,KK1,TH1, ECT1)
CALI, FINMAX (AG, TMST, T, KK, TH)
CALL FINMAX(AG1,TMST,TML,KKL1, TH1)
M=CMST
IF((EPSN2-ECT1) .GT.TM1) THEN
EPSM=(EPSN2-ECT1)
ELSE
EPSM=TM1
ENDIF
IF( (EPSN2-ECT1) .I/T.0.D0) EPSM=TM1
DUM=DABS (CM/ESC)
IF(DUM.LE.3.D0) THEN
ESP=-ESC* (. 145D0 *DUM*DUM+ . 13D0 *DUM)
ELSE
ESP=CM+ (3.DO*ESC- 1. 695D0*ESC)
ENDIF
DUM=TM/0.9D0/EST
IF(DUM.LE.1.D0) THEN
REFS=0.D0
ELSE
REFS=-UFC* (DUM-1.D0) /2.D0/2.D0
ENDIF
IF(REFS.LT. -UFC/2.D0) REFS=-UFC/2.D0
REFS=0.D0
IF(ISOL.EQ.1) THEN
IF(EP.GE.ECT) THEN
IF((EP-ECT) .GE.TM) THEN
CALL DTENS ( (EP-ECT) , UST, YOT, YST, YFT, UFT, AG, D1, ISYM,

* SST1,CRRN, Us, YS,RS, AS, DS, ™, AGE, REP, IREN)
ELSE
CALL DTENS (TM, UST, YOT, YST, YFT, UFT, AG, PD1, ISYM, PSST1,
* CRRN, US, Y¥S, RS, AS, DS, ™, AGE, REP, TREN)

D1=(PSST1-REFS) /T™M
SST1=PSST1-D1* (TM-EP+ECT)
ENDIF
ELSEIF(EP.LT.ECT) THEN
IF(EP.LE.(M) THEN
CALL DCOMP (EP, EPSM, USC, YOC, YSC, YFC, UFC,

* D1,D2,ISYM,SST1)
ELSE
CALL DCOMP (CM, EPSM, USC, YOC, YSC, YFC, UFC,
* PD1,D2, ISYM, PSSTI1)

UFCC=PSST1/5.D0

D1=PSST1/ {(M-ESP)

REFE1=(UFCC-PSST1) /D1+CM
IF(EP.GT.(M.AND.EP.LE.REFE1) THEN
SST1=PSST1-D1* (CM-EP)

ELSEIF (EP.GT.REFEL.AND.EP.LE.ECT) THEN
D1=(UFCC-REFS) / (REFE1-ECT)
SST1=REFS+D1* (EP-ECT)

ENDIF

IF(SST1.GT.REFS) THEN

SST1=REFS

D1=0.D0

ENDIF

ENDIF

ENDIF
ELSE
CALL STPOS (EP, EPSN2, EPSM, USC, YOC, YSC, YFC, UFC, ISYM,
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* UsT, YOT, YST, YFT, UFT, US, YS, RS, AS, DS, AG, ECT,
* IMODE, ES, STR, STIF, ESP, (M, M, HS, AGP, REFS, CRRN,
* AGE, REP, IREN)
IF(ES(1) .EQ.0.D0.AND.ES(15) .EQ.0.D0) THEN
IF(EP.GE.0.D0) THEN
CALL DTENS (EP, UST, YOT, YST, YFT, UFT, AG, D1, ISYM, SST1,
* CRRN, US, ¥S, RS, AS, DS, T™, AGE, REP, TREN)
ELSE
CALL DCOMP (EP, EPSM, USC, YOC, YSC, YFC, UFC,
* D1,D2, ISYM, SST1)
ENDIF
RETURN
ENDIF
IF(EP.GE.ES(15)) THEN
CALL DTENS((EP-ECT),UST, YOT, YST, YFT, UFT, AG, D1, ISYM,
* SST1,CRRN,US, YS, RS, AS, DS, ™, AGE, REP, IREN)
ELSEIF(EP.LT.ES(15) .AND.EP.GE.ES(6)) THEN
JMODE=2
CALL CMODE (EP,D1l, SST1, ES, STR, STIF, JMODE)
ELSEIF(EP.LT.ES(6) .AND.EP.GT.ES(2)) THEN
IF(EP.GE.ES(10)) THEN
JMODE=2
CALL CMODE (EP,D1, SST1, ES, STR, STIF, JMODE)
ELSEIF(EP.LE.ES(9)) THEN
JMODE=1
CALL CMODE (EP,D1, SST1, ES, STR, STIF, JMODE)
ELSEIF(EP.GT.ES(9) .AND.EP.LT.ES(10)) THEN
CALL TLINE(EP,ES(10),ES(9),STR(10),STR(9),D1,S8ST1)
ENDIF
ELSEIF(EP.LE.ES(2) .AND.EP.GT.ES(1)) THEN
JMODE=1
CALL CMODE (EP,D1,SST1, ES, STR, STIF, JMODE)
ELSEIF(EP.LE.ES(1) ) THEN
CALL DCOMP (EP, EPSM, USC, YOC, YSC, YFC, UFC,
* D1,D2,ISYM, SST1)
ENDIF
IF(EP.LT.ECT.AND.SST1.GT.REFS) THEN
SST1=REFS
D1=0.D0
ENDIF
ENDIF
RETURN
END

SUBROUTINE CMODE(EP,D1,SST1,ES,STR, STIF, JMODE)
IMPLICIT REAL*8(A-H,0-Z)
COMMON /CNTL2/ EEFT, FFT,TOL
DIMENSION ES(30),STR(30),STIF(30)
IF(JMODE.EQ.1) THEN
IF(EP.LE.ES(15) .AND.EP.GT.ES(6)) THEN
CALL TLINE(EP,ES(15),ES(6),STR(15),STR(6),D1,SST1)
ELSEIF(EP.LE.ES(6) .AND.EP.GT.ES(5)) THEN
CALL TLINE(EP,ES(6),ES(5),STR(6),STR(5),D1,SST1)
ELSEIF(EP.LE.ES(5) .AND.EP.GT.ES(2)) THEN
CALL TLINE(EP,ES(5),ES(2),STR(5),STR(2),D1,SST1)
ELSEIF(EP.LE.ES(2) .AND.EP.GE.ES (1)) THEN
CALL TLINE(EP,ES(2),ES(1),STR(2),STR(1),Dl1,SST1)
ENDIF

173



ELSEIF (JMODE.EQ.2) THEN
IF (EP.LE.ES(15) .AND.EP.GT.ES(6)) THEN

CALL TLINE(EP,ES(15),ES(6),STR(15),STR(6),D1,SST1)
ELSEIF(EP.LE.ES(6) .AND.EP.GT.ES (5) ) THEN

CALL TLINE(EP,ES(6),ES(5),STR(6),STR(5),D1,SST1)
ELSEIF(EP.LE.ES(5) .AND.EP.GT.ES (4) ) THEN

CALL TLINE(EP,ES(5),ES(4),STR(5),STR(4),D1,SST1)
ELSEIF(EP.LE.ES(4) .AND.EP.GT.ES(3)) THEN

CALL TLINE(EP,ES(4),ES(3),STR(4),STR(3),D1,S8ST1)
ELSEIF (EP.LE.ES(3) .AND.EP.GT.ES(2) ) THEN

CALL TLINE(EP,ES(3),ES(2),STR(3),STR(2),D1,SST1)
ELSEIF (EP.LE.ES(2) .AND.EP.GE.ES (1)) THEN

CALL TLINE(EP,ES(2),ES(1),STR(2),STR(1),D1,SST1)
ENDIF

ENDIF

RETURN

END

SUBROUTINE STPOS (P, P2, EPSM,USC, YOC, YSC, YFC, UFC,
ISYM,

UST, YOT, YST, YFT, UFT, US, YS, RS, AS, DS,
AG,ECT, IMODE, ES, STR, STIF, ESP, CM, T™, HS, AGP, REFS, CRRN,
AGE, REP, IREN)

IMPLICIT REAL*S (A-H,0-Z)

COMMON /CNTL2/ EEFT,FFT,TOL

DIMENSION US(6),YS(6),RS(6),AS(6),DS(6)

DIMENSION ES(30),STR(30),STIF (30)

DIMENSION HS(4),CRRN(4),REP(6),IREN(6)

ESC=DABS (USC/YSC)

EST=DABS (UST/YST)

EFT=EEFT

EFC=DABS (UFC/YFC)

IF (DABS(TM) .LE.0.9D0*EST.AND.DABS ((M) .LE.0.9DO*EST) THEN

ES(1)=0.D0

ES(15)=0.D0

ENDIF

IF(DABS (M) .GE.0.9DO*EST) THEN

IF(CM.LT.P2) THEN

ES (1)=CM

ELSE

ES(1)=P2

ENDIF

CALL DCOMP(ES(1),EPSM, USC, YOC, YSC, YFC, UFC,

* STIF(1),D2,ISYM,STR{1))
STR(2)=0.85DO*STR(1)
ES(2)=(STR(2) -STR(1) ) /YOC+ES (1)

STR (3)=0.5D0*STR(1)
ES(3)=(STR(3)-STR(1)) /YOC+ES(1)
STR(5)=0.D0

ES (5)=ESP

STR(4)=0.D0
ES(4)=(-STR(3))*(ES(2) -ESP) /STR(2) +ES (3}
ES (6)=ECT

STR(6)=0.D0

* % % *

ELSE
STR(6)=0.D0
ES(6)=0.D0

DO 100 I=1,5

STR(I)=STR(6)
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100 ES(I)=ES(6)
ENDIF
IF(HS (1) .NE.0.DO) THEN
ES(9)=HS (1)
ES (10)=ES(9) +ESC/8.D0
ELSEIF(HS (2) .NE.0.D0) THEN
ES(10)=HS(2)
ES(9)=ES(10) -ESC/8.D0
ENDIF
IF(ES(9) .LT.ES(2)) ES(9)=ES(2)
IF(ES(10) .GT.ES(5)) ES(10)=ES(5)
JMODE=1
CALL CMODE(ES(9),STIF(9),STR(9),ES,STR, STIF, JMODE)
JMODE=2
CALL CMODE(ES(10),STIF(10),STR(10),ES, STR, STIF, JMODE)
IF(DABS (TM) .GE.0.9D0*EST) THEN
ES (15) =TM+ECT
CALL DTENS ((ES(15) -ECT), UST, YOT, YST, YFT, UFT,
* AG, STIF(15), ISYM, STR(15) , CRRN, US, YS, RS, AS, DS, ™, AGE,
* REP, IREN)
STR(14)=0.D0
ES (14)=ECT
ELSE
ES(6)=ES (5)
ES(14)=ES(5)
ES (15)=ES (5)
STR(6)=STR(5)
STR(14)=STR(5)
STR(15)=STR(5)
ENDIF
RETURN
END

SUBROUTINE DCOMP (EPS1, EPS2,USC, YOC, YSC, YFC, UFC,
* D1,D2,ISYM,ST1)

IMPLICIT REAL*8 (A-H,0-Z)

COMMON /ITRN/ JST,IST

STE=1.D0

DUM=DABS (EPS1)

ESC=DABS (USC/YSC)

EFC=DABS (UFC/YFC)

IF(EPS2.GT.0.D0) THEN

STE=. 8D0+.34D0*EPS2/ESC

IF(STE.LT.1.D0) STE=1.DO

IF(STE.GT.USC/UFC) STE=USC/UFC

ENDIF

USCC=USC/STE

YSCC=USCC/ESC

CALL TENFF (DUM, USCC, YOC, YSCC, YFC, UFC, ESC, EFC, D1, ST1)

ST1=-8T1

RETURN

END

SUBROUTINE TLINE(EP,ES1,ES2,STRI1,STR2,D1,SST1)
IMPLICIT REAL*8 (A-H,0-Z)

IF(ES2.EQ.ES]l) THEN

D1=0.D0O

SST1=STR1

RETURN
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300

ENDIF
D1=(STR2-STR1)/(ES2-ES1)
SST1=D1* (EP-ES1) +STR1
RETURN

END

SUBROUTINE DTENS (EPS1,UST, YOT, YST, YFT, UFT, AG,D1, ISYM,
ST1,CRRN, US, YS, RS, AS, DS, T™, AGE, REP, IREN)

IMPLICIT REAL*8 (A-H,0-Z)

DIMENSION CRRN(4),REP(6),IREN(6)

DIMENSION US(6),YS(6),RS(6),AS(6),DS(6)

COMMON /CNTL2/ EEFT, FFT,TOL

COMMON /DIMS/ IIDUM(14),IARC,IBAU, ISTL

PAT=2.DO*DASIN(1.DO0)

ALAM=0.01D0

EFT=EEFT

UFT=ALAM*UST

EST=(UST/YST)

CALL TENFF(EPS1,UST, YOT, YST, YFT, UFT, EST, EFT, D1, ST1)

IF(EPS1.LP.EST) RETURN

DO 300 I=1,6

IF(IREN(I).NE.O0.AND.REP(I).GT.0.D0) THEN

EFTE=US(I)/YS(I)

CALL TENFF(REP(I),UST,YOT, YST, YFT, UFT, EST, EFTE, D1E, ST1E)

DAGM=DABS (AG-AS(I))

IF (DAGM.GT.PAT/2.D0) DAGM=PAI-DAGM

ST1E=STL1E* (DCOS (DAGM) **.5)

D1E=D1E* (DQOS (DAGM) **.5)

ENDIF

IF(ST1.LT.ST1E) THEN

ST1=ST1E

D1=D1E

ENDIF

CONTINUE

RETURN

END

SUBROUTINE DMATS1 (D, REP, EMAX, CONSTM, NCM, NMAT, TREN, RST,
UsT, YST, IBAU, EPS, CMST, USC, YSC, UFC, YFC)

IMPLICIT REAL*8(A-H,0-Z)

COMMON /ITRN/ JST,IST

COMMON /CNTL2/ EEFT, FFT,TOL

DIMENSION CONSTM(NCM),EMAX(6),REPP(3),EPS(3)

DIMENSION D(3,3),TP(3,3),TT(3,3),56(4),CL(4)

ESC=USC/YSC

EFC=UFC/YFC

IF(IREN.NE.O) THEN

US=DABS (CONSTM(1) )

YS=DABS (CONSTM(2) )

RS=DABS (OONSTM(3) )

AS=(CONSTM(4))

ALFA=DABS (CONST(5) )

ESH=DABS (CONSTM(7) )

EUT=DABS (CONSTM(8) )

SUT=DARS (CONSTM(9) )

ELSE

US=0.D0

YS=0.D0

RS=0.DO
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AS=0.D0
ALFA=0.D0
ESH=0.D0
EUT=0.D0
SUT=0.D0
ENDIF
PAT=2.DO*DASIN(1.D0)
AS=AS*PATI/180.D0
Do 10 I=1,3
DO 10 J=1,3
10 D(I,J)=0.D0O
IF(IREN.LT.1) RETURN
IF(IBAU.BEQ.1) THEN
CALL DDMATI (REP,US, YS, AS, DD, RRT, EMAX)
ELSEIF(IBAU.EQ.2) THEN
CALL DDMAT2 (REP,US, YS,AS, DD, RRT, EMAX, ESH, EUT, SUT)
ENDIF
D(1, 1)=DD*RS
TP ({1, 1)=DCOS (AS) *DCOS (AS)
TP (1, 2) =DSIN(AS) *DSIN(AS)
TP (1, 3)=DSIN(AS) *DCOS (AS)
TP(2,1)=TP(1,2)
TP(2,2)=TP(1,1)
TP(2,3)=-TP(1,3)
TP(3,1)=-2.DO*TP(1,3)
TP(3,2)=2,DO*TP(1, 3)
TP(3,3)=TP(1,1)-TP(1,2)
DO 100 II=1,3
DO 100 JJ=1,3
TT(II,JJ)=0.D0
DO 100 IJ=1,3
100 TT(II,JJ)=TT(II,JJ)+D(II,IJ)*TP(IJ,JJ)
DO 200 II=1,3
DO 200 JJ=1,3
D(II,JJ)=0.D0
DO 200 IJ=1,3
200 D(II,JdJ)=D(II,JJ)+TP(IJ,II)*TT(1J,JJ)
RETURN
END

SUBROUTINE DDMAT1 (REP,US, YS,AS, DD, RRT, EMAX)
IMPLICIT REAL*8(A-H,O-Z)

COMMON /CNTL2/ EEFT,FFT,TOL

COMMON /ITRN/ JST,IST

DIMENSION EMAX(6),ES(6),STR(6),STIF(6)
EY=US/YS

IF(JST.EQ.0) THEN

DD=YS

RRT=YS*REP

RETURN

ENDIF

CALL SSTPOS (EMAX,ES, STR, STIF, US, YS)
IF(REP.GE.EMAX (1)) THEN

DD=YS/FFT

RRT=DD* (REP-EY) +US

ELSEIF (REP.LE.EMAX(6)) THEN

DD=YS/FFT

RRT=DD* (REP+EY) -US

ELSEIF (REP.LT.EMAX (1) . AND.REP.GT.EMAX (6) ) THEN
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CALL TLINE(REP,ES(1),ES(6),STR(1),STR(6),DD, RRT)
ENDIF

RETURN

END

SUBROUTINE DDMAT2 (REP,US,YS,AS,DD, RRT, EMAX, ESH, EUT, SUT)
IMPLICIT REAL*8(A-H,0-Z)
COMMON /CNTL2/ EEFT,FFT,TOL
COMMON /ITRN/ JST,IST
DIMENSION EMAX(6)
EY=US/YS
IF(JST.EQ.0) THEN
DD=YS
RRT=YS*REP
RETURN
ENDIF
IF(EMAX(1).EQ.0.D0.AND.EMAX(6) .EQ.0.D0) THEN
IF(DABS (REP) .LE.EY) THEN
DD=YS
RRT=YS*DABS (REP)
ELSELF (DABS (REP) .GT.EY.AND.DABS (REP) .LE.ESH) THEN
RRT=US
DD=YS/1.D3
ELSEIF (DABS (REP) .GT.ESH) THEN
ESS=DABS (REP) - ESH
ADUM= (60 .DO*ESS+2.D0)
BDUM=(112.D0O*ESS+2.D0)
RRT=BDUM/ADUM+ESS * (SUT/US-1.7D0) / (EUT-ESH)
RRT=RRT*US
DD=(112.DO*ADUM- 60, DO*BDUM) /ADUM/ADUM
DD=DD+ (SUT/US-1.7D0) / (EUT-ESH)
DD=DD*US
ENDIF
IF (REP.LT.0.D0) RRT=-RRT
RETURN
ENDIF
IF(EMAX(1l) .NE.0.DO) THEN
EM=EMAX (1)
EP1=EMAX (4)
EP2=EMAX (2)
EP3=EMAX (5)
EPC=(EM-EMAX (5) ) *0 . 8D0+EMAX (5)
IF(EPC.LT.EP2) EPC=EP2
CALL CUVSOL(EM,US,YS,DD, RRT1, ESH, EUT, SUT,
* EP1,EP2)
DDUM=DABS (RRT1/ (EM-EPC) )
IF (DDUM.GT.YS) EPC=EM-RRT1/YS
ELSEIF(EMAX(6) .NE.0.DO) THEN
EM=EMAX (6)
EP1=EMAX (5)
EP2=EMAX (2)
EP3=EMAX (4)
EPC=(EM-EMAX (4) ) *0.8D0+EMAX(4)
IF (EPC.GT.EP2) EPC=EP2
CALL CUVSOL(EM, Us, YS,DD, RRT1, ESH, EUT, SUT,
* EP1,EP2)
DDUM=DABS (RRT1/ (EM-EPC) )
IF(DDUM.GT.YS) EPC=EM+RRT1/YS
ENDIF
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IF (DABS (REP-EPC) .GT.DABS (EM-EPC) . AND.
* (REP-EPC) * (EM-EPC) .GT'.0.D0) THEN

CALL CUVSOL(REP,US, YS, DD, RRT, ESH, EUT, SUT,
* EP1,EP2)

ELSEIF (DABS (REP-EPC) .LT.DARBS (EM-EPC) .AND.
* (REP-EPC) * (EM-EPC) .GT.0.D0) THEN
CALl, CUVSOL(EM,Us,YS,DD, RRT1, ESH, EUT, SUT,

* EP1,EP2)
DD=DABS (RRT'1/ (EM-EPC) )
RRT=RRT1-DABS (DD* (EM-REP) )

ELSE

CALL CUVSOL (REP, US, YS, DD, RRT, ESH, EUT, SUT,
* EP3, EPC)

ENDIF

IF(REP.LT.EPC) RRT=-RRT

RETURN

END

SUBROUTINE CUVSOL(REP, US, ¥S, DD, RRT, ESH, EUT, SUT,
* EP1,EP2)

IMPLICIT REAL*8(A-H,0-Z)

EY=US/YS

IF(EP1.EQ.0.DO.AND.EP2.EQ.0.D0O) THEN
IF(DABS(REP) .LT.ESH) THEN
RRT=US
DD=YS/1.D3
ELSE
ESS=DABS (REP) - ESH
ADUM=(60.DO*ESS+2.D0)
BDUWM=(112.DO*ESS+2.D0)
RRT=BDUM/ADUM+ESS* (SUT/US-1.7D0) / (EUT-ESH)
RRT=RRT*US
DD=(112.D0*ADUM-60 . DO*BDUM) /ADUM/ADUM
DD=DD+ (SUT/US-1.7D0) / (EUT-ESH)
DD=DD*US
ENDIF
ELSE
EIP=DABS (EP2-EP1)
ESHD=ESH*DLOG (0.5d0+EIP/EY) /1. 38D0
IF(ESHD.LT.0.3D0*ESH) ESHD=ESH*0.3D0
ESD=DABS (REP-EP2)

RRT=US* (1.D0-DEXP(-2.05DO*ESD/ESHD) +0. 129D0 *ESD/ESHD)
DD=US* (2.05D0*DEXP ( -2.05D0*ESD/ESHD) /ESHD+0 . 129D0/ESHD)
IF(RRT.LT.US} RETURN
EM1=0.D0
EM2=ESD
100 EMM=(EM1+EM2)/2.D0
RRT=US* (1.D0-DEXP( -2.05D0*EMM/ESHD) +0. 129D0 *EMM/ESHD)
IF(DABS (1.D0-RRT/US) .GT.1.D-2) THEN
IF(RRT.GT.US) THEN
EM2=EMM
ELSE
EM1=EMM
ENDIF
GOTO 100
ENDIF
ESS=ESD-EMM
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ADUM= (60 .DO¥ESS+2.D0)
BDUM=(112.DO*ESS+2.D0)

RRT=BDUM/ADUM+ESS* (SUT/US-1.7D0) / (EUT-ESH)
RRT=RRT*US

DD=(112.DO*ADUM-60 . DO*BDUM) /ADUM/ADUM
DD=DD+ (SUT/US- 1.7D0) / (EUT-ESH)

DD=DD*US

ENDIF

RETURN

END

SUBROUTINE SSTPOS (EMAX, ES, STR, STIF, US, YS)
IMPLICIT REAL*8(A-H,0-2)
COMMON /CNTL2/ EEFT,FFT,TOL
DIMENSION EMAX(6),ES(6),STR{6),STIF(6)
EY=US/YS

IF(EMAX (1) .EQ.0.D0.AND.EMAX(6) .EQ.0.D0) THEN
ES (2)=EY

EMAX(1)=EY

ES (1) =EMAX (1)

ES (3)=EY

ES(5)=-EY

EMBX(6)=-EY

ES(6)=EMAX(6)

ES(4)=-EY

ELSE

ES (1)=EMAX (1)

ES(2)=ES(1)

ES(3)=ES(2)

ES (6)=EMAX(6)

ES(5)=ES(6)

ES(4)=ES(5)

ENDIF

STR(1)=YS/FFT* (ES (1) -EY) +US
STIF(1)=YS/FFT
STR(2)=YS/FFT* (ES(2) -EY) +US
STIF(2)=YS/FFT
STR(6)=YS/FFT* (ES(6) +EY) -US
STIF(6)=YS/FFT
STR(5)=YS/FFT* (ES(5) +EY) -US
STIF(5)=YS/FFT

RETURN

END

SUBROUTINE STMAT (ST1,AG, EPSN, CONSTM1, NCM, P, PMAX, NMAT1,
* NMAT2, IELM, CONSTM2, IE, KX, AGP, AGE, REP)
IMPLICIT REAL*8(A-H,0-Z)

COMMON /CL/ ISOL,ISP

COMMON /CNTL/ ISYM, IDUM(28)

COMMON /ITRN/ JST,IST

DIMENSION CONSTMI (NCM, NMAT1) , CONSTM2 (NCM, NMAT?2)
DIMENSION ST1(3),8ST1(3),EPSN(3),TP(3,3),TT(3,3),P(2)
DIMENSION US(6),YS(6),RS(6),AS(6),DS(6),D(3,3)
DIMENSION PMAX(28), IREN(6),REP(6)
PAT=2.DO*DASIN(1.DO)

CALL SCONS (CONSTM1, CONSTM2, YM, PR, THIC, NINT, UWT,
* USC, YOC, YSC, YFC, UFC, UST, YOT, YST, YFT, UFT,
* IREN, US, YS, RS, AS, DS, NCM, IELM, NMAT1, NMAT2)
IF(AG.GT.0.D0) AG1=AG-PAT/2.D0
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IF(AG.LE.0.D0) AGl=AG+PAI/2.D0
IF(AGE.GT.0.D0) AGEl=AGE-PAI/2.D0
IF(AGE.LE.0.D0) AGEl=AGE+PAI/2.D0

DO 20 I=1,3
ST1(I)=0.D0
SST1(I)=0.D0
20 CONTINUE
IF(JST.EQ.CG) THEN
DO 10 I=1,3
DO 10 J=1,3
10 D(I,J)=0.D0
c
Counnn INITIAL STIFFNESS
c
DUM=YOC/ (1.D0-PR*PR)
D(1,1)=DuM
D(1,2)=DUM¥PR
D(2,1)=DUM*PR
D(2,2)=DUM
D(3,3)=YOC/2.D0/(1.DO+PR)
DO 15 I=1,3
DO 15 J=1,3
SST1(I)=SST1(I)+D(I,J) *EPSN(J)
15 CONTINUE
GOTO 200
ENDIF
c
C....PRINCIPAL AXIS 1
c
CALL DSTRESS (EPSN(1),EPSN({2),USC, YOC, YSC, YFC, UFC,
* D(1,1),D(1,2),ISYM,UST, YOT, YST, YFT, UFT, US, YS, RS,
* AS,DS,AG,SSTL (1), PMAX (1), PMAX(9) , PMAX(17),
* PMAX (25) , AGP, PMAX (2) , AGE, REP, IREN)
c
C....PRINCIPAL AXIS 2
c
CALL DSTRESS (EPSN(2),EPSN(1),USC, YOC, YSC, YFC, UFC,
D(2,2),D(2,1),ISYM, UST, YOT, YST, YFT, UFT, US, YS, RS,
* AS,DS,AG1,SST1(2) ,PMAX(1) , PMAX(9) , PMAX (17),
* PMAX (25) , AGP, PMAX (2) , AGE1, REP, IREN)
c
Covun. TRANSFORMATION MATRIX
c

200 TP(1, 1)=DCOS (AG) *DCOS (AG)
TP(1,2)=DSIN(AG)*DSIN (AG)
TP(1,3)=-2.DO*DSIN (AG) *DCOS (AG)
TP(2,1)=TP(1,2)

TP(2,2)=TP(1,1)

TP(2,3)=-TP(1,3)

TP (3, 1)=DSIN (AG) *DCOS (AG)
TP(3,2)=-TP(3,1)
TP(3,3)=TP(1,1)-TP(1,2)

DO 100 II=1,3

DO 100 JJ=1,3
ST1(II)=STL1(II)+TP(II,JJ)*SST1(JJ)

100 CONTINUE
RETURN
END
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SUBROUTINE TENFF(EPS1,UST, YOT, YST, YFT, UFT, EST, EFT,
* D1,ST1)
IMPLICIT REAL*8 (A-H,0-Z)
ESFT=EST+ (EFT-EST) /5.D0
IF(EPS1.LE.EST) THEN
DUM=EPS1/EST
ST1=UST* (2.D0*DUM-DUM*DUM)
D1=UST* (2.D0/EST-2.D0*DUM/EST)
ELSEIF (EPS1.GT.EST.AND.EPS1.LE.EFT) THEN
D1=(UFT-UST) / (EFT-EST)
ST1=D1* (EPS1-EST) +UST
ELSEIF (EPS1.GT.EFT) THEN
D1=0.D0
ST1=UFT
ENDIF
RETURN
END

SUBROUTINE STMATS1 (RRST, REP, EMAX, QONSTM, NCM,
*  RST,NMAT, IREN, UST, YST, IBAU, EPS, CMST, USC, YSC, UFC, YFC)
IMPLICIT REAL*8(A-H,0-Z)

COMMON /ITRN/ JST, IST

COMMON /CNTL2/ EEFT, FFT,TOL
DIMENSION CONSTM (NCM),EMAX(6),EPS(3)
DIMENSION RRST(3),TP(3,3),TT(3,3),SC(4),CL(4)
ESC=UsSC/YSC

EFC=UFC/YFC

IF(IREN.NE.O) THEN

US=DABS (CONSTM(1))

YS=DABS (CONSTM(2) )

RS=DABS (CONSTM(3) )

AS=(CONSTM(4) )

ALFA=DABS (CONSTM(5) )

ESH=DABS (CONSTM(7) )

EUT=DABS (CONSTM(8) )

SUT=DABS (CONSTM(9) )

ELSE

US=0.D0

YS=0.D0

RS=0.D0

AS=0.D0

ALFA=0.DO

ESH=0.D0

EUT=0.D0

SUT=0.D0

ENDIF

PAT=2.DO*DASIN(1.D0)

AS=AS*PAT/180.D0

DO 10 I=1,3

RRST(I)=0.D0

CONTINUE

IF(IREN.LT.1) RETURN

IF(IBAU.EQ.1) THEN

CALL DDMATL (REP, US, YS,AS, DD, RRT, EMAX)
ELSEIF (IBAU.EQ.2) THEN

CALL DDMAT2 (REP, US, YS, AS, DD, RRT, EMAX, ESH, EUT, SUT)
ENDIF

RST=RRT

RRT=RRT*RS
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20

100

500

TP (1, 1)=DCOS (AS) *DCOS (AS)
TP(1,2)=DSIN(AS) *DSIN (AS)
TP(1,3)=-2.DO*DSIN(AS) *DCOS (AS)
TP(2,1)=TP(1,2)

TP(2,2)=TP(1, 1)
TP(2,3)=-TP(1,3)

TP (3, 1)=DSIN(AS) *DCOS (AS)
TP(3,2)=-TP(3,1)

TP(3,3)=TP(1, 1) -TP(1,2)

DO 100 II=1,3
RRST(II)=RRST(IT)+TP(II,1l)*RRT
CONTINUE

RETURN

END

SUBROUTINE UPQD4 (XX, CONSTML, ST1,AGP, EMAX, RST1,
RST2,NM, EU, IE, EEP, EEU, PMAX,
NMAT1,NMAT2, IEIM, ICOMP, ELRHS,
CONSTM2 , NGAU, MNDOFN, MNNE , MNDOFE , NDIM,
SHST, IARC, IBAU, ISTL)
IMPLICIT REAL*8 (A-H,0-Z)
COMMON /CNTL/ ISYM, IIDUM(28)
COMMON /ITRN/ JST,IST
COMMON /XGWGT/ XG(4,4),WGT(4,4)
DIMENSION CONSTM1 (NCM,NMAT1), EU(MNDOFE) , EEP (MNDOFE)
DIMENSION EEU(MNDOFE), ELRHS (MNDOFE)
DIMENSION CONSTM2 (NCM,NMAT2),DB(4)
DIMENSION D(4,4),B(4,16),XX(NDIM,MNNE) ,S(16,16)
DIMENSION EPSN(3),SIGM(3),5T1(3,NGAU*NGAU)
DIMENSION D1(3,3),D2(3,3),AGP (NGAU*NGAU)
DIMENSION EMAX (2+*6, NGAU*NGAU)
DIMENSION RRST1(3),RRST2(3),EPS(3)
DIMENSION RST1 (NGAU*NGAU) , RST2 (NGAU*NGAU)
DIMENSION P(2),TST1(3),DST1(3)
DIMENSION PMAX (28, NGAU*NGAU) , IREN(6)
DIMENSION DD(9,30),H(8)
DIMENSION US(6),YS(6),RS(6),AS(6),DS(6)
DIMENSION REP(6), REPP(6)
PAT=2.D0*DASIN(1.DO)
CALL SCONS (CONSTM1, CONSTM2,YM, PR, THIC, NINT, UWT,
* Usc, YOC, ¥SC, YFC, UFC, UST, YOT, YST, YFT, UFT,
* IREN, US, YS, RS, AS, DS, NOM, IELM, NMAT1 , NMAT2 )
NINT=NGAU
ITYPE=2
SHST=0.D0
DO 500 I=1,MNDOFE
EEP(I)=0.DO
ELRHS (I)=0.D0
CONTINUE
KK=0
DO 1830 II=1,NINT
RI=XG(II,NINT)
DO 1830 IJ=1,NINT
KK=KK+1
SI=XG(IJ,NINT)
DO 1810 J=1,3
SIGM(J)=0.0D0
DST1(J)=0.0D0

* * % *

1810 EPSN(J)=0.0D0
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IF (ICOMP.EQ.2) THEN
CALL STDMS (XX, B, H, DET, RI, SI,XBAR,NEL, ITYPE, NDIM, MNNE )
ELSE
CALL STDM4 (XX, B, H,DET,RI,SI,XBAR,NEL, ITYPE, NDIM, MNNE)
ENDIF
IF(ITYPE.GT.0) XBAR=THIC
WISWGT (II,NINT) *WGT (IJ, NINT) *XBAR*DET
DO 1815 J=2,MNDOFE, 2
JI=J-1
EPSN(1)=EPSN(1)+B(1,JJ) *EU(JJ)
EPSN(2)=EPSN(2)+B(2,J ) *EU(J )
EPSN(3)=EPSN(3) +B(3,JJ) *EU(JJ) +B(3,J) *EU(J)

1815 CONTINUE
SHST=SHST- (EPSN(1) -EPSN{2))

c

C.....PRINCIPAL STRAIN DIRECTION

c
CC=(EPSN(1)+EPSN(2) ) *0.5D0
BB=(EPSN (1) -EPSN(2) ) *0.5D0
DUM=AGP (KK)
EPSN(3)=EPSN(3)/2.D0
CALL PRINCIPAL(EPSN, P, AG, DUM)
EPSN(3)=EPSN(3) *2.D0
EPSN(1)=P(1)
EPSN(2)=P(2)
AGS=AG
EPS(1)=EPSN(1)
EPS(2)=EPSN(2)
DO 955 I=1,6
IF(IREN(I).NE.O) THEN
REP(I)=CC+BB*DCOS (2.DO*AS(I))+EPSN(3) *DSIN(2.DO*AS(I))/2.D0
REPP(I)=REP(I)
CALL REPST(REP(I),UST, YST,USC, YSC,
* AS(I),PMAX(1,KK),PMAX(9,KK),PMAX(17,KK))
ENDIF

955 CONTINUE

CALL STMATS1(RRST1,REPP(1),EMAX(1l,KK),
* CONSTM1 (1, IREN(1)),NCM,RSTL (KK),
* NMAT1,IREN(1),UST,YST, IBAU, EPS, PMAX(1,KKX), USC, YSC, UFC, YFC)
CALL STMATS1(RRST2,REPP(2),EMAX(7,KK),
* CONSTM1 (1, IREN(2)),NCM,RST2 (KK),
* NMATL1,IREN(2),UST,YST, IBAU, EPS, PMAX (1, KK),USC, YSC, UFC, YFC)

CALI, STMAT(ST1(1,KK),BGS, EPS, CONSTM1,NCM, P, PMAX (1,KK) ,
* NMATL, NMAT2, TELM,
* CONSTM2, IE, KK, AGP (KK) , AG, REP)
DO 900 I=1,MNDOFE
DO 910 J=1,3
DUM=ST1 (J, KK) +RRSTL (J)
DUM=DUM+RRST?2 (J)
910 EEP(I)=EEP(I)+B(J,I)*DUM*WT
900 CONTINUE
KA=0
DO 960 I=2,MNDOFE, 2
KA=KA+1
EEP (I)=EEP(I) -H (KA) *UNT*WT
960 CONTINUE
1830 CONTINUE
TKK=KK
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SHST=-SHST/TKK
RETURN
END

SUBROUTINE SCONS (CONSTM1, CONSTM2, YM, PR, THIC, NINT, UWT,
* USC, YOC, YSC, YFC, UFC, UST, YOT, YST, YFT, UFT,
* IREN,US,YS, RS, AS, DS, NCM, IELM, NMAT1, NMAT2 )

IMPLICIT REAL*8 (A-H,0-Z)

DIMENSION CONSTMI (NCM, NMATL1) , CONSTM2 (NCM, NMAT2)

DIMENSION US(6),YS(6),RS(6),AS(6),DS(6),IREN(6)

PAT=2.DO*DASIN(1.D0O)

YM=DABS (CONSTM2 (1, IEIM) )

PR=DABS (CONSTM2 (2, IEIM) )

THIC=DABS (CONSTM2 (3, IELM) )

NINT=DABS (CONSTM2 (4, IELM) )

UWT=DABS (CONSTM2 (5, IELM) )

USC=DABS (CONSTM2 (6 , IEIM) )

YOC=DABS (CONSTM2 (7, IELM) )

YSC=DABS (CONSTM2 (8, IEIM) )

YFC=DABS (CONSTM2 (9, IELM) )

UFC=DABS (CONSTM2 (10, IEIM) )

UST=DABS (CONSTM2 (11, IEIM) )

YOT=DABS (CONSTM2 (12, IEIM) )

YST=DABS (CONSTM2 (13, IEIM) )

YFT=DABS (CONSTM2 (14, IEIM) )

UFT=DABS (CONSTM2 (15, IEIM) )

IREN (1)=DABS (CONSTM2 (16, IEIM) )

IREN (2)=DABS (CONSTM2 (17, IEIM) )

IREN (3)=DABS (CONSTM2 (18, IELM) )

IREN (4)=DABS (CONSTM2 (19, IEIM) )

IREN (5)=DABS (CONSTM2 (20, IEIM) )

IREN (6)=DABS (CONSTM2 (21, IEIM))

DO 5 I=1,6

IF(IREN(I) .NE.O) THEN

US (I)=DABS (CONSTM1 (1, IREN(I)))

YS (I)=DABS (CONSTML (2, IREN(I)))

RS (I)=DABS (CONSTM1 (3, IREN(I)))

AS(I)=(CONSTM1 (4,IREN(I)))

DS (I)=DABS (CONSTML (5, IREN(I)))

AS(I)=AS(I)*PAI/180.D0

ELSE

US(I)=0.D0

YS(I)=0.D0

RS(I)=0.DO

AS(I)=0.DO

DS(I)=0.DO

ENDIF

CONTINUE

RETURN

END

SUBROUTINE EFQD4 (XX, CONSTM1, ST1,AGP, EMAX, RST1,RST2,
NCM, EU, IE, EEP, ASTRESS, ASTRAIN,
PMAX, NMAT'1, NMAT2, IELM, ICOMP,
CONSTM2 , NGAU, MNDOFN, MNNE,, MNDOFE , NDIM,
SHDWM, NEL, IARC, IBAU, ISTL)

IMPLICIT REAL*8 (A-H,0-2Z)

COMMON /CL/ ISOL,ISP

COMMON /CNTL/ IDUM(29)

* % % »
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COMMON /ITRN/ JST,IST

COMMON /CNTL1/ TAB

COMMON /CNTL2/ EEFT, FFT,TOL

COMMON /XGWGT/ XG(4,4),WsT(4,4)

DIMENSION CONSTMI (NCM,NMAT1) , EU(MNDOFE) , EEP (MNDOFN, MNNE)

DIMENSION CONSTM2 (NCM, NMAT2) ,DB(4)

DIMENSION D(4,4),B(4,16), XX (NDIM, MINE)

DIMENSION EPSN(3),SIGM(4),STL(3,NGAU*NGAU), EPS(3)

DIMENSION AGP (NGAU*NGAU) , EMAX (2*6, NGAU*NGAU)

DIMENSION RST1 (NGAU*NGAU) , RST2 (NGAU*NGAU)

DIMENSION ASTRESS(3),ASTRAIN(3),P(2),P1(2)

DIMENSION PMAX (28, NGAU*NGAU),IREN(6),0UP(12)

DIMENSION US(6),YS(6),RS(6),AS(6),DS(6)

DIMENSION REP(3),RES(2)

DIMENSION HSS(4)

PAI=2.DO*DASIN(1.DO)

CALL SCONS (CONSTM1, CONSTM2,YM, PR, THIC, NINT, UWT,
* USC, YOC, YSC, YFC, UFS, UST, YOT, YST, YFT, UFT,
* IREN,US, YS,RS,AS, DS, NCM, IEIM, NMAT1, NMAT2 )

ESC=DABS (USC/YSC)

EST=DABS (UST/YST)

NINT=NGAU

ITYPE=2

DO 2500 I=1,12

OUP(I)=0.DO

2500 CONTINUE

SHDUM=0.D0

KK=0

DO 830 II=1,NINT

DO 830 IJ=l1,NINT

KK=KK+1

CALL BMAT4 (IE, ITYPE,NINT, XX, B, II, IJ, NDIM, MNNE,
* ICOMP)

DO 810 J=1,4

SIGM(J)=0.0D0

810 EPSN(J)=0.0D0

DO 815 J=2,MNDOFE, 2

JJ=J-1

EPSN(1)=EPSN(1)+B(1,JJ) *EU(JJ)

EPSN(2)=EPSN(2)+B(2,J ) *EU(J )

EPSN(3)=EPSN(3) +B(3,JJ) *EU(JJ) +B(3, J) *EU(J)

IF(ITYPE.GT.0) GOTO 815

EPSN{4)=EPSN(4) +B(4,JJ) *EU(JJ)

815 CONTINUE
845 CONTINUE

C..... CALCULATE PRINCIPAL STRAINS $ DIRECTION

CC=(EPSN(1) +EPSN(2) ) *0.5D0
BB=(EPSN(1) -EPSN(2) ) *0.5D0
DUM=AGP (KK)

EPSN(3)=EPSN(3) /2.D0

CALL PRINCIPAL(EPSN, P1, AG, DUM)
EPSN(3) =EPSN(3) *2.D0
EPSN(1)=P1(1)

EPSN(2)=P1(2)

AGS=2G

EPS (1)=EPSN(1)

EPS (2)=EPSN(2)
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CALCULATE PRINCIPAL STRESSES & DIRECTIONS

aon

CC1=(ST1(1,KK)+ST1(2,KK) ) *0.5D0
BB1=(ST1(1,KK) -ST1(2,KK)) *0.5D0

P(1)=CC1+BB1*DCOS (2.DO*AGS) +ST1 (3, KK) *DSIN(2.DO*AGS)
P(2)=2.D0*CC1-P (1)

AGG=AGS*180.D0/PAT

SHDUM=P (1) -P(2)

IF(AG.GT.0.D0) AGl=AG-PAI/2.D0

IF(AG.LE.0.D0) AG1=AG+PAI/2.DO

IF(AGS.GT.0.D0) AGS1=AGS-PAI/2.D0

IF(AGS.LE.0.D0) AGS1=AGS+PAI/2.D0

DDUM1=0.D0
DDUM2=0 . DO
c
C.....HISTORY OF CONCRETE
c
IF(JST.NE.O) THEN
CALL STRM(EPS(1),EST, ESC,USC,YOC,YSC,
* YFC, UFC, UST, YOT, YST, YFT, UFT', DDUM1,
* PMAX (1, KK) , PMAX (9, KK) ,PMAX (17, KK) ,NEL, KK, AGS,
* PMAX (2, KK) , AG)
AGP (KK) =AG
IF(ISOL.NE.l) THEN
HSS (1) =PMAX (25, KK)
HSS (2) =PMAX (26, KK)
HSS (3) =PMAX (27, KK)
HSS (4) =PMAX (28, KK)
IF(EPS(1).LT.EPS(2)) THEN
CALI, STRMAX (EPS(1),EPS(2),USC, YOC, YSC, YFC, UFC,
* ISYM, UST, YOT, YST, YFT, UFT, US, YS, RS, AS, DS, AGS,
* PMAX (1, KK) , PMAX (9, KK) , PMAX(17,KK) , PMAX (25, KK) ,
* HSS(1),AGP (KK) , PMAX (2,KK) ,AG)
ELSEIF(EPS(2) .LT.EPS(1)) THEN
CALL STRMAX(EPS(2),EPS(1),USC, YOC, YSC,YFC, UFC,
* ISYM, UST, YOT, YST, YFT, UFT, US, YS, RS, AS, DS, AGS1,
* PMAX (1,KK) , PMAX (9, KK) , PMAX(17,KK) , PMAX (25, KK) ,
* HSS(1),AGP(KK) ,PMAX(2,KK) ,AG1)
ENDIF
PMAX (25, KK)=HSS (1)
PMAX (26, KK) =HSS (2)
PMAX (27, KK) =HSS (3)
PMAX (28, KK) =HSS (4)
ENDIF
ENDIF
AG=AG*180.D0/PAT
o]
C.....HISTORY OF SMEARED REINFORCING STEEL
c

REP(1)=CC+BB*DCQOS (2.D0*AS (1) ) +EPSN (3) *DSIN(2.DO*AS (1)) /2.DO
REP(2)=CC+BB*DCOS (2 .DO*AS (2) ) +EPSN (3) *DSIN(2.D0O*AS(2) ) /2.D0
DDUM1=0.D0
DDUM2=0.D0
IF(JST.NE.O) THEN
IF(IREN(1l) .NE.0.DO) THEN
CALL STRAINLT (EMAX(1,KK),REP(1) ,DDUM1, IBAU,
* CONSTM1 (1, IREN(1)),NCM, RST1(KK))
ENDIF

187



IF(IREN(2) .NE.0.DO) THEN

CALL STRAINLT (EMAX(7,KK),REP(2),DDUM2, IBAU,

* CONSTM1 (1, IREN(2)) ,NCM, RST2 (KK) )

ENDIF

ENDIF

RES (1) =RST1 (KX)

IF(RS(1) .NE.0.D0O) RES(1)=RES(1l)/RS(1)

RES (2) =RST2 (KK)

IF(RS(2) .NE.0.DO) RES(2)=RES(1l)/RS(2)

WRITE(42) P1(1),P1(2),P(1),P(2),AGG,

* EPSN(1) ,RES(1),EPSN(2),RES(2)
830 CONTINUE

RETURN

END

SUBROUTINE DAMSUR(AG, P, TMST, KK, TH, KK1)
IMPLICIT REAL*8 (A-H,0-Z)
DIMENSION TMST(8)
PAT=2.DO*DASIN(1.D0)
CALL FINMAX (AG,TMST,TM, KK, TH)
IF (DABS (TM) .LT.DABS (P)) FAS=AG
AK=0.D0
DO 300 I=1,8
TTH=-PAIL/2.D0+ (AK+1.D0) *PAIL/8.D0
DAG=DABS (TTH-AG)
IF(DAG.GE.PAI*5.D0/6.D0) DAG=PAI-DAG
IF(DAG.LE.PAT/6.D0) THEN
PM=P*DCOS (3 .DO*DAG)
IF(DABS (PM) .GT.DABS (TMST(I))) TMST(I)=PM
ENDIF
AK=AK+1.D0

300 CONTINUE
RETURN
END

SUBROUTINE SETCR(AG,P, TMST, KK, TH, KK1, CRRN, EST)
IMPLICIT REAL*8 (A-H,0-Z)
DIMENSION TMST (8),CRRN(4)
PAT=2.DO*DASIN(1.D0)
CALL FINMAX (AG,TMST,T™, KK, TH)
IF(TM.LT.EST.AND.P.GE.EST) THEN
DO 300 I=1,4
IK=I
IF(CRRN(I) .EQ.0.D0) GOTO 500
DAG=DABS (CRRN(I) -AG)
IF(DAG.LE.PAI/6.D0.OR.DAG.GE.PATI*5.D0/6.D0) RETURN
300 CONTINUE
500 CRRN(IK)=2G
ENDIF
RETURN
END

SUBROUTINE REFSUR (AG, TMST, RMST, CMST, OMST1, ESC, EST,
a* KK)

IMPLICIT REAL*8 (A-H,0-Z)

DIMENSION TMST(8),RMST(8)

PAT=2.DO*DASIN(1.D0)

K1=KK-1

IF(K1.EQ.0) Kl=8
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AK=0.D0
DO 300 I=1,8
IF(I.NE.KK.AND.I.NE.K1) THEN
IF(TMST(I) .LT.0.9DO*EST) THEN
=-PAT/2.D0+ (AK+1.D0) *PAT/8.D0
DAG=DABS (TTH- AG)
IF(DAG.GT.PAT/2.D0) DAG=PAI-DAG
RMST1=(CMST+CMST1) /2.D0+ (CMST-CMST'1) *DCOS (2 . DO*DAG) /2.D0
IF (RMST(I) .GT.RMST1) RMST (I}=RMST1
ENDIF
ENDIF
AK=AK+1.D0
300 CONTINUE
RETURN
END

SUBROUTINE REFPICK (AG, CMST, RMST, ESC, KX, TH, ECTT)
IMPLICIT REAL*8 (A-H,0-Z)
DIMENSION RMST(8)
PAI=2.DO*DASIN(1.D0)
PTH=TH-PAI/8.D0
K1=KK-1
IF(K1.EQ.0) Kl1=8
RMST1=RMST (K1)
RMST2=RMST (KK)
RM=RMST'1+ (AG-PTH) * (RMST2-RMST1) / (TH- PTH)
DUM=DABS (RM/ESC)
IF(DUM.LE.3.D0) THEN
ESP=-ESC* (. 145D0*DUM*DUM+ . 13D0*DUM)
ELSE
ESP=RM+ (3.DO*ESC-1.695D0O*ESC)
ENDIF
ECTT=ESP
RETURN
END

SUBROUTINE FINMAX (AG,TMST,T™, KK, TH)

IMPLICIT REAL*8 (A-H,0-Z)

DIMENSION TMST(8)

PATI=2.DO*DASIN(1.D0)

PTH=TH- PAL/8.D0

K1=KK-1

IF(K1.EQ.0) Kl=8

TM=TMST (K1) + (AG-PTH) * (TMST (KK) - TMST (K1) ) / (TH-PTH)
RETURN

END

SUBROUTINE AGPICK(AG,KK,TH)

IMPLICIT REAL*8 (A-H,0-Z)

PAI=2.DO*DASIN(1.D0)

AK=0.D0

DO 100 I=1,8

PTH=-PAI/2.D0+AK*PAI/8.D0
=-PAI/2.D0+ (AK+1.D0) *PAI/8.D0

IF(AG.GT.PTH.AND.AG.LE.TH) THEN

KK=I

RETURN

ENDIF

AK=AK+1.D0
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100 CONTINUE
RETURN
END

SUBROUTINE STRM (P, EST, ESC, USC, YOC, YSC,
* YFC, UFC, UST, YOT, YST, YFT, UFT, DUM,
* CMST, TMST, RMST, NEL, KJL, AG, CRRN, AGE)

IMPLICIT REAL*8 (A-H,0-Z)

COMMON /ITRN/ JST,IST

DIMENSION TMST(8),RMST(8), CRRN(4)

DIMENSION P(2)

PAI=2.DO*DASIN(1.D0)

IF(AG.GT.0.D0) AGl=AG-PAI/2.DO

IF(AG.LE.0.D0) AG1=AG+PAT/2.D0

CALL AGPICK(AG,KK,TH)

CALL AGPICK(AG1, KK1,TH1)

CALL REFPICK (AG, CMST, RMST, ESC, KX, TH, ECT)

CALL REFPICK (AG1l, CMST,RMST,ESC,KK1,TH1, ECT1)

IF((P(1)-ECT).GE.0.DO.AND. (P(2)-ECT1) .GE.0.D0) THEN

CALL SETCR({AG, (P(1) -ECT), TMST, KK, TH, KK1, CRRN, EST)

CALL SETCR(AG1, (P(2) -ECT1),TMST, KK1, TH1, KK, CRRN, EST)
CALL DAMSUR(AG, (P(1) -ECT), TMST, KK, TH, KK1)

CALL DAMSUR (AG1, (P(2)-ECT1),TMST, KK1,TH1, KK)
ELSEIF((P(1l) -ECT) .GE.0.DO.AND. (P(2)-ECT1) .LT.0.D0) THEN
CALL SETCR(AG, (P(1)-ECT), T™MST, KK, TH, KK1, CRRN, EST)

CALL DAMSUR (AG, (P(1) -ECT), TMST, KX, TH, KK1)

IF (QMST.GT.P(2)) THEN

CMST=P (2)

DUM=0.D0
CALL REFSUR(AG1, TMST, RMST, CMST, DUM, ESC, EST, KK)

ENDIF
ELSEIF((P(l) -ECT) .LT.0.D0.AND. (P(2) -ECT1) .GE.0.D0) THEN
CALL SETCR({AG1, (P(2) -ECT1),TMST, KK1,THl, KK, CRRN, EST)

CALL DAMSUR(AGL, (P(2)-ECT1) ,TMST, KK1,THI, KK)

IF(CMST.GT.P(1)) THEN

CMST=P (1)

DUM=0.D0
CALI, REFSUR (AG, TMST, RMST, CMST, DM, ESC, EST, KK1)

ENDIF
ELSEIF((P(1) -ECT) .LT.0.D0.AND. (P(2) -ECTL) .IT.0.D0) THEN

IF(QOMST.GT.P(1) .AND.P(2).GT.P{1)) THEN

CMST=P (1)

CALL REFSUR (AG,TMST, RMST, CMST, P(2) , ESC, EST, KK1)
ELSEIF (OMST.GT.P(2) .AND.P(1) .GT.P(2)) THEN
CMST=P (2)

CALL REFSUR(AG1, TMST, RMST, CMST, P(1),ESC, EST, KK)
ENDIF

ENDIF

RETURN

END

SUBROUTINE STRMAX (EP, EPSN2,USC, YOC, YSC, YFC, UFC,
* ISYM, UST, YOT, ¥ST, YFT, UFT, US, YS, RS, AS, DS,
* AG, CMST, TMST, RMST, HS, HSS, AGP, CRRN, AGE)
IMPLICIT REAL*8(A-H,O-2)

COMMON /ITRN/ JST,IST

COMMON /CL,/ ISOL,ISP

DIMENSION US(6),YS(6),RS(6),AS(6),DS(6)
DIMENSION ES(30),STR(30),STIF(30)
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DIMENSION TMST(8),RMST(8),HS(4),HSS(2),CRRN(4)
PAT=2.DO*DASIN(1.D0O)
IF(AG.GT.0.D0) AGl=AG-PAI/2.D0
IF(AG.LE.0.D0) AGl=AG+PAI/2.D0
ESC=DABS (USC/YSC)
EST=DABS (UST/YST)
CALL AGPICK(AG, KK, TH)
CALL AGPICK(AGL,KK1,TH)
CALL REFPICK (AG, CMST, RMST, ESC, KK, TH, ECT)
CALL REFPICK(AG1,CMST,RMST,ESC,KK1,TH1,ECT1)
CALL FINMAX(AG,TMST,TM, KK, TH)
CALL FINMAX(AGL, TMST,TML, KK1,TH1)
QM=CMST
IF ((EPSN2-ECT1) .GT.M1) THEN
EPSM=(EPSN2-ECT1)
ELSE
EPSM=TM1
ENDIF
IF((EPSN2-ECT1) .LT.0.D0) EPSM=TM1
DUM=DABS (CM/ESC)
IF(DUM.LE.3.D0) THEN
ESP=-ESC* (. 145D0*DUM*DUM+ . 13D0*DUM)
ELSE
ESP=CM+ (3.DO*ESC-1.695D0*ESC)
ENDIF
DUM=TM/0.9D0/EST
IF(DUM.LE.1.DO) THEN
REFS=0.D0
ELSE
REFS=-UFC* (DUM-1.D0) /2.D0/2.D0
ENDIF
IF (REFS.LT.-UFC/2.D0) REFS=-UFC/2.D0
REFS=0.D0
CALL STPOS(EP, EPSN2, EPSM, USC, YOC, YSC, YFC, UFC,
* ISYM, UST, YOT, YST, YFT, UFT, US, YS,RS,AS, DS,
AG, ECT, IMODE, ES, STR, STIF, ESP, CM, ™™, HS, AGP,
* REFS, CRRN, AGE, REP, TREN)
IF(EP.EQ.ES(1l)) THEN
HSS(1)=ES(2)
HSS(2)=0.D0

*

ELSE
IF(EP.LT.ES(9)) THEN
HSS(1)=EP
IF(HSS(1) .LT.ES(2)) HSS(1)=ES(2)
HSS(2)=0.D0
ELSEIF(EP.GT.ES(10)) THEN
HSS(2)=EP
IF(HSS(2) .GT.ES(5)) HSS(2)=ES(5)
HSS(1)=0.D0
ENDIF
ENDIF
RETURN
END

SUBROUTINE STRAINLT (EMAX, EP, DUM, IBAU, CONSTM, NCM, RST)
IMPLICIT REAL*8 (A-H,0-2)

DIMENSION CONSTM (NCM), EMAX(6)

US=DABS (CONSTM(1) )

YS=DABS (CONSTM(2) )
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RS=DABS (CONSTM(3))
AS=(OONSTM(4) )
ALFA=DABS (CONSTM(5) )
ESH=DABS (CONSTM (7))
EUT=DABS (CONSTM(8) )
SUT=DABS (CONSTM(9) )
EY=US/YS

IF(IBAU.EQ.1l) THEN
IF(EMAX (1) .LT.EP) THEN
EMAX (1) =EP

EMAX (6)=EMAX (1) -EY*2.D0
ELSEIF (EMAX (6) .GT.EP) THEN

EMAX (6) =EP

EMAX (1)=EMAX(6)+EY*2.D0
ENDIF

IF(EP.GE.EMAX (1)) THEN
DUM=1.D0

ELSEIF (EP.LE.EMAX(6)) THEN
DUM=-1.D0

ENDIF

ELSE

IF(EMRX (1) .EQ.0.D0.AND.EMAX(6) .EQ.0.DO.AND.
* DABS (EP) .LT.EY) RETURN

IF(EMAX (1) .EQ.0.D0.AND.EMAX(6) .EQ.0.D0) THEN
IF(EP.GT.0.D0) EMAX(1)=EP
IF(EP.LT.0.D0) EMAX(6)=EP
ELSEIF(EMAX (1) .NE.0.D0.2AND.EMAX(6) .EQ.0.D0) THEN
EM=EMAX (1)
EP1=EMAX (4)
EP2=EMAX (2)
EPC=(EMAX(1) -EMAX (5) ) *0.8DO+EMAX (5)
IF(EPC.LT.EP2) EPC=EP2
CALL CUVSOL(EM,Us, YS,DD, RRT1, ESH, EUT, SUT,
* EP1,EP2)
DDUM=DABS (RRT1/ (EM-EPC) )
IF(DDUM.GT.YS) EPC=EM-RRT1/YS
IF(EP.GT.EMAX (1)) THEN
EMAX (1) =EP
EMAX (6)=0.D0
ELSEIF(EP.LT.EPC.AND.RST.LE.-US/3.D0) THEN
IF(EPC.GT.EMAX(4)) EMAX(4)=EPC
EMAX (6) =EP
EMAX (1)=0.D0
EMAX (2) =EPC
ENDIF
ELSEIF(EMAX(1) .EQ.0.D0.AND.EMAX(6) .NE.0.D0) THEN
EM=EMAX (6)
EP1=EMAX (5)
EP2=EMAX (2)
EPC=(EMAX(6) -EMAX (4) ) *0.8D0+EMAX(4)
IF(EPC.GT.EP2) EPC=EP2
CALL CUVSOL (EM,US, YS,DD, RRT1, ESH, EUT, SUT,
* EP1,EP2)
DDUM=DABS (RRT1/ (EM-EPC) )
IF(DDUM.GT.YS) EPC=EM+RRT1/YS
IF(EP.LT.EMAX(6)) THEN
EMAX (6) =EP
EMAX(1)=0.D0
ELSEIF (EP.GT.EPC.AND.RST.GE.US/3.D0) THEN
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IF(EPC.LT.EMAX(5)) EMAX(5)=EPC

EMAX (1) =EP
EMAX (6)=0.D0
EMAX (2)=EPC
ENDIF
ENDIF
ENDIF
RETURN

END

SUBROUTINE PRINCIPAL(S,P,AG,DUM)
IMPLICIT REAL*8 (A-H,0-Z)
COMMON /ITRN/ JST,IST
DIMENSION S(3)
DIMENSION P(2)
PAT=2.DO*DASIN(1.D0)
CC=(S(1)+S(2))*0.5D0
BB=(S(1)-s(2))*0.5D0
CR=DSQRT (BB*BB+S (3) *S (3) )
IF(DABS (BB) .GT.1.0D-40) THEN
AG=DATAN (S (3) /BB) /2.D0
ELSE
AG=DUM
ENDIF
IF(AG.GT.0.D0) THEN
APP=AG
AMM=AG-PAL/2.D0
ENDIF
IF(AG.LE.0.DO) THEN
APP=AG+PAI/2.D0
AMM=AG
ENDIF
IF(DUM.LT.AMM) THEN
RA1=DABS (AMM-DUM)
RA2=DARBS (APP-DUM- PAT)
IF(RAL.LT.RA2) THEN
AG=PAMM
ELSE
AG=APP
ENDIF
ELSEIF (DUM.GE.AMM.AND.DUM.LT.APP) THEN
RA1=DABS (AMM-DUM)
RA2=DABS (APP-DUM)
IF{RA1.LT.RA2) THEN
AG=MM
ELSE
AG=APP
ENDIF
ELSEIF (DUM.GE.APP) THEN
RA1=DABS (DUM- AMM-PAT)
RA2=DABS (APP-DUM)
IF{RAl.LT.RA2) THEN
AG=AMM
ELSE
AG=APP
ENDIF
ENDIF
P (1)=CC+BB*DCOS (2.DO*AG) +S (3) *DSIN(2.DO*AG)
P(2)=2.D0O*CC-P(1)
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IF(JST.EQ.0) THEN
IF(P(2).GT.P(1)) THEN
DDUM=P(2)

P(2)=P(1)

P(1)=DDUM
IF(AG.GT.0.D0) THEN
AG=AG-PAI/2.D0
ELSE
AG=AG+PAI/2.D0
ENDIF

ENDIF

ENDIF

RETURN

END

SUBROUTINE BEMAT4 (NEL, ITYPE,NINT, XX, B,I,J, NDIM,MNNE,
* ICOMP)

IMPLICIT REAL*S(A-H,O-Z)

COMMON /XGWGT/ XG(4,4),WGT(4,4)

DIMENSION B(4, 16), XX (NDIM,MNNE) ,H(8)

RI=XG (I, NINT)

SI=XG (J, NINT)

IF (ICOMP.EQ.2) THEN

CALL STDMS (XX, B, H,DET, RI,SI, XBAR,NEL, ITYPE, NDIM, MNNE)
ELSE

CALL STDM4 (XX, B,H, DET, RI, SI, XBAR, NEL, ITYPE, NDIM, MNNE)
ENDIF

RETURN

END

SUBROUTINE SF1 (XX, CONSTM, S, EMAX, NCM, NEL, EU, ELRHS, RST,
* ICOMP, NGAU, MNDOFN, MNNE , MNDOFE, NDIM, IBAU)
IMPLICIT REAL*8(A-H,O-2Z)
COMMON /CNTL/ISYM, NUMEL, IRESOL, IIDUM(26)
COMMON /ITRN/ JST,IST
COMMON /CONSTS/ ZERO, ONE, TWO
COMMON /XGWGT/ XG(4,4),WGT(4,4)
DIMENSION B(3),XX(NDIM,MNNE), S (MNDOFE, MNDOFE)
DIMENSION CONSTM (NCM)
DIMENSION EMAX (6, NGAU)
DIMENSION EU (MNDOFN,MNNE) , ELRHS (MNDOFE)
DIMENSION RST(NGAU),UV(3),UL(3),XL(3),SL(3,3)
US=DABS (CONSTM(1) )
YS=DARS {CONSTM(2) )
ALFA=DABS (CONSTM(5) )
AS=DABS (CONSTM(6) )
ESH=DABS (CONSTM(7) )
EUT=DABS (CONSTM(8) )
SUT=DABS (CONSTM (9) )
NINT=NGAU
CALL CLEAR (ELRHS, MNDOFE)
IF (IRESOL.EQ.1) RETURN
DO 30 I=1,MNDOFE
DO 30 J=1,MNDOFE
30 S(1,J)=0.D0
BL=ZERO
DO 10 I=1,NDIM
BL=BL+ (XX(I,2)-XX (I, 1)) *{(XX(I,2)-XX(1,1))
10 CONTINUE
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BL=DSQRT (BL)
DO 20 I=1,NDIM
UV (I)=(XX(I,2)-XxX(I,1))/BL
20 CONTINUE
c
C.....TWO NODE LINE ELEMENT
C
IF (ICOMP.BEQ.0) THEN
REP=(EU(1,2)-EU(1, 1)) *Uv(l)
REP=REP+ (EU(2, 2) -EU(2, 1) ) *UV(2)
REP=REP/BL
IF (IBAU.EQ.1) THEN
CALL DDMAT1 (REP, US, YS, AS, DD, RRT, EMAX (1, 1))
ELSEIF (IRAU.EQ.2) THEN
CALL DDMAT2 (REP, US, YS,AS,DD, RRT, EMAX (1, 1) , ESH, EUT, SUT)
ENDIF
ASTF=DD*AS/BL
DO 40 I=1,NDIM
DO 40 J=I,NDIM
S(I,J)=ASTF*UV(I) *UV(J)
S(I,J+NDIM)=-S(I,J)
S (I+NDIM,J)=-S(I,J)
S (I+NDIM, J+NDIM)=S(I,J)
40 CONTINUE
RETURN
ELSEIF (ICOMP.EQ.2) THEN

C..... THREE NODE LINE ELEMENT

DO 55 I=1,3
DO 55 J=1,3
55 SL(I,J)=0.D0
DO 50 I=1,3
50 UL(I)=EU(1,I)*UV(1)+EU(2,I)*UV(2)
XL(1)=0.D0
XL (2)=BL
BL=ZERO
DO 70 I=1,NDIM
BL=BL+ (XX(I,3) -XX(I,2))*(XX(I,3)-XX(I,2))
70 CONTINUE
BL=DSQRT (BL)
XL (3)=XL(2) +BL
KK=0
DO 80 LX=1,NINT
RI=XG (LX, NINT)
KK=KK+1
CALL TRSTDMS (XIL:, B, DET, RT, NDIM, MNNE, NEL)
WI=WGT (LX, NINT) *AS*DET
EPSN=0.0D0
DO 815 J=1,3
EPSN=EPSN+B (J) *UL{J)
815 CONTINUE
IF(IBAU.EQ.1) THEN
CALL DDMATL (EPSN, US, YS,AS, DD, RRT, EMAX (1, KK) )
ELSEIF(IBAU.EQ.2) THEN
CALL DDMAT2 (EPSN, US, YS, AS, DD, RRT, EMAX (1, KK) , ESH, EUT, SUT)
ENDIF
DO 370 J=1,3
DO 360 I=1,3
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360 SL(I,J)=SL(I,J)+B(I)*DD*B(J)*WT

370 CONTINUE

80 CONTINUE
S(1,1)=SL(1, 1) *UV (1) *UV(1)
S(1,2)=SL(1, 1) *UV(1) *UV(2)
S(1,3)=SL(1,2)*UvV (1) *UV(1)
S(1,4)=SL(1,2) *UV(1) *UV(2)
S(1,5)=SL(1,3) *UV(1) *UV (1)
S(1,6)=SL{1,3)*Uv(Ll)*UvV(2)
S(2,2)=SL(1, 1) *Uv(2) *UV(2)
S$(2,3)=SL(1,2)*Uv(2) *UV(1)
S(2,4)=SL(1, 2) *UV(2) *UV(2)
S(2,5)=SL(1,3)*UV(2) *UV(1)
S(2,6)=SL(1,3)*UV(2) *UV(2)
S§(3,3)=SL(2,2) *Uv(1l)*UvV(l)
S$(3,4)=SL{2,2) *UV{1) *UV(2)
S(3,5)=8SL(2,3) *UV(1) *UV(1)
S(3,6)=8L(2,3) *UV(1) *UV(2)
S(4,4)=SL(2,2) *UV(2) *Uv(2)
S(4,5)=SL(2,3) *Uv(2) *UV(1)
S(4,6)=SL(2,3)*Uv(2) *UV(2)
S(5,5)=SL(3,3) *Uv(1) *UV(1)
S(5,6)=SL(3,3) *UV(1) *UV(2)
S(6,6)=SL(3,3) *UV(2) *UV(2)
DO 400 I=1,6
DO 400 J=I,6
S(J,I)=S(I,J)

400 CONTINUE
ENDIF
RETURN
END

SUBROUTINE TRSTIMS (XX, B,DET, R, NDIM, MNNE, NEL)
IMPLICIT REAL*8(A-H,0-2)
DIMENSION XX(3),B(3),H(3)
H(l) = -(1.D0-2.DO*R)/2.D0
H(2) -2.D0*R
H(3) (1.D0+2.D0*R) /2.D0
DET=0.0D0
DO 20 K=1,3

20 DET=DET+H(K) *XX(K)
IF(DET.GT.0.00000001D0) GO TO 40
WRITE (50,2000) NEL
STOP

40 DUM=1.0DO/DET
DO 60 K=1,3
B(K)=H(K) *DUM

60 CONTINUE
RETURN

2000 FORMAT (10HO*** ERROR,

1 S52H ZERO OR NEGATIVE JACOBIAN DETERMINANT FOR ELEMENT (,I4,
2 1H) )
END

SUBROUTINE UPSS1 (XX, CONSTM, EMAX, NCM, NEL, EU, ELRHS, RST,
* ICOMP, NGAU, MNDOFN , MNNE , MNDOFE , NDIM, EEP, IBAU)

IMPLICIT REAL*8(A-H,0-2)
COMMON /CNTL/ ISYM, IIDUM(28)
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15

10

20

50

70

COMMON /ITRN/ JST,IST
COMMON /CONSTS/ ZERO, ONE, TWO

COMMON /XGWGT/ XG(4,4),WGT(4,4)
DIMENSION B(3), XX {NDIM, MNNE)

DIMENSION EPP(3)

DIMENSION CONSTM (NCM), EEP (MNDOFN, MNNE)
DIMENSION EMAX(6,NGAU)

DIMENSION EU(MNDOFN,MNNE) , ELRHS (MNDOFE),P(2),H(8)
DIMENSION RST(NGAU),UV(3),UL(3),XL(3),SL(3,3)
US=DABS (CONSTM (1) )

YS=DABS (CONSTM(2) )

ALFA=DABS (CONSTM(5) )

AS=DABS (CONSTM(6) )

ESH=DABS (CONSTM(7) )

EUT=DABS (CONSTM(8) )

SUT=DABS (CONSTM(9))

NINT=NGAU

CALL CLEAR (ELRHS, MNDOFE)

DO 5 I=1,MNNE

PO 5 J=1,MNDOFN

EEP(J,I)=0.D0

CONTINUE

DO 15 I=1,3

EPP(I)=0.D0

CONTINUE

BL~ZERO

DO 10 I=1,NDIM

BL=BL+ (XX(I,2) -XX(I, 1)) *(XX(I,2)-XX(I,1))
CONTINUE

BL=DSQRT (BL)

DO 20 I=1,NDIM

UV (I)=(XX(T,2)-XX(I,1))/BL

CONTINUE

IF (ICOMP.EQ.0) THEN
REP=(EU(1,2) -EU(1, 1)) *UV(1)
REP=REP+ (EU(2, 2) -EU(2, 1) ) *UV(2)
REP=REP/BL

IF (IBAU.EQ.1) THEN

CALL DDMATL (REP,US,YS,AS,DD, RRT,EMAX(1,1))
ELSEIF (IBAU.EQ.2) THEN

CALL DDMAT2 (REP,US,YS, AS,DD, RRT, EMAX (1, 1) , ESH, EUT, SUT)
ENDIF

RST (1) =RRT

EEP{1, 1)=-RST(1)*UV(1)*AS

EEP(2, 1)=-RST(1)*UV(2) *AS
EEP(1,2)=RST (1) *UV(1)*AS

EEP(2, 2) =RST (1) *UV(2) *AS

RETURN

ELSEIF(ICOMP.EQ.2) THEN

DO 50 I=1,3
UL(I)=EU(1,I)*UV(1)+EU(2,I)*UV(2)
XL:(1)=0.D0

XL (2)=BL

BL=ZERO

DO 70 I=1,NDIM

BL=BL+ (XX (I, 3) -XX(I,2)) *{XX(I,3)-XX(I,2))
CONTINUE

BL=DSQRT (BL)

XL (3)=XL(2)+BL
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KK=0
DO 80 LX=1,NINT
RI=XG(LX, NINT)
KK=KK+1
CALL TRSTDMS (XL, B, DET, RT, NDIM, MNNE, NEL)
WI=WGT (LX, NINT) *AS*DET
EPSN=0.0D0
DO 815 J=1,3
EPSN=EPSN+B(J) *UL(J)

815 CONTINUE
IF(IBAU.EQ.1) THEN
CALL DDMATI1 (EPSN,US,YS,AS,DD,RRT, EMAX (1,KK))
ELSEIF (IBAU.EQ.2) THEN
CALL DDMAT2 (EPSN,US,YS,AS,DD,RRT, EMAX (1, KK) , ESH, EUT, SUT)
ENDIF
RST(KK)=RRT
DO 900 I=1,3

900 EPP(I)=EPP(I)+B(I)*RST (KK) *WTI

80 CONTINUE

DO 1000 I=1,3
DO 1000 J=1,2
EEP(J, I)=EPP(I)*UV(J)

1000 CONTINUE
ENDIF
RETURN
END

SUBROUTINE SS1 (XX, CONSTM, EMAX, NCM, NEL, EU, RST,
* ICOMP, NGAU, MNDOFN, MNNE , MNDOFE, NDIM, IBAU)
IMPLICIT REAL*8(A-H,0-Z)
COMMON /CNTL/ ISYM, IIDUM(28)
COMMON /ITRN/ JST,IST
COMMON /CONSTS/ ZERO,ONE, TWO
COMMON /CNTL1/ TAB
COMMON /XGWGT/ XG(4,4),WST(4,4)
DIMENSION B(3),XX(NDIM, MNNE)
DIMENSION CONSTM (NCM)
DIMENSION EMAX(6,NGAU)
DIMENSION EU(MNDOFN, MNNE)
DIMENSION RST (NGAU),UV(3),UL(3),XL(3)
US=DABS (CONSTM(1) )
YS=DABS (CONSTM(2) )
ALFA=DABS (CONSTM(5) )
AS=DABS (CONSTM(6) )
ESH=DABS (CONSTM(7) )
EUT=DABS (CONSTM(8) )
SUT=DABS (CONSTM(9) )
NINT=NGAU
BL=ZERO
DO 10 I=1,NDIM
BL=BL+ (XX(I, 2) -XX(I, 1)) * (XX(I, 2) -XX(X, 1))
10 CONTINUE
BL=DSQRT (BL)
DO 20 I=1,NDIM
UV(I)=(XX(I,2)-XX(I,1))/BL
20 CONTINUE
IF (ICOMP.EQ.0) THEN
REP=(EU(1, 2) -EU(1,1) ) *Uv(1)
REP=REP+ (EU(2, 2) -EU(2,1) ) *UV(2)
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REP=REP/BL:
DDUM=0.D0
IF(JST.NE.O) THEN
CALL STRAINLT (EMAX(1,1),REP, DDUM, IBAU, CONSTM, NCM, RST (1))
ENDIF
WRITE (42) REP,RST(1)
RETURN
ELSEIF(ICOMP.EQ.2) THEN
DO 50 I=1,3
50 UL(I)=EU(1,I)*UV(1)+EU(2,I)*UV(2)
XL(1)=0.D0
XI.(2)=BL
BL=ZERO
DO 70 I=1,NDIM
BL=BL+ (XX(I,3) -XX(I,2))*(XX(I,3)-XX(I,2))
70 CONTINUE
BL=DSQRT (BL)
XL, (3)=XL(2)+BL
KK=0
DO 80 LX=1,NINT
RI=XG (LX,NINT)
KK=KK+1
CALL TRSTDMS (XL, B, DET, RT , NDIM, MNNE, NEL)
WT=WGT (LX, NINT) *AS*DET
EPSN=0.0D0
DO 815 J=1,3
EPSN=EPSN+B (J) *UL(J)
815 CONTINUE
DDUM=0.D0
IF(JST.NE.O) THEN
CALL STRAINLT (EMAX(1,KK) , EPSN, DDUM, IBAU, CONSTM, NCM, RST (KK) )
ENDIF
WRITE(42) EPSN, RST(KK)
80 CONTINUE
ENDIF
RETURN
END

SUBROUTINE SFBOND (XX, CONSTM, S, EMAX, NCM, NEL, EU, ELRHS, RST,
* ICOMP, NGAU, MNDOFN , MNNE , MNDOFE , NDIM)
IMPLICIT REAL*8(A-H,0-2)

COMMON /CNTL/ ISYM,NWEL, IRESOL, IIDUM(26)
COMMON /ITRN/ JST,IST

COMMON /CONSTS/ ZEROQ, ONE, TWO

COMMON /XGWGT/ XG(4,4),WGT(4,4)

DIMENSION B(3),XX(NDIM,MNNE), S (MNDOFE, MNDOFE)
DIMENSION CONSTM (NCM)

DIMENSION EMAX(11,NGAU)

DIMENSION EU{MNDOFN,MNNE) , ELRHS (MNDOFE)
DIMENSION RST(NGAU),UV(3),UL(3),XL(3),SL(6,6)
DIMENSION ULL(6),TAU(10),SE(10)
PAT=2.DO*DASIN(1.D0)

US=DABS (CONSTM(1) )

YS=DABS (CONSTM (2) )

DS=DABS (CONSTM(5) )

AS=DABS (CONSTM(6) )

TAU(1)=DABS (CONSTM(10))

TAU(3)=DABS (CONSTM(11)}

SE (1)=DABS (CONSTM(12))
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SE (2)=DABS (CONSTM (13} )
SE(3)=DABS (CONSTM(14) )
CS=DS*PAI
NINT=NGAU
CALL CLEAR(ELRHS, MNDOFE)
IF(IRESOL.EQ.1l) RETURN
DO 30 I=1,MNDOFE
DO 30 J=1,MNDOFE
30 S(I,J)=0.D0
BL~=ZERO
DO 10 I=1,NDIM
BL=BL+ (XX(I,2) -XX(I, 1)) *(XX(I,2)-XX(I,1))
10 CONTINUE
BL=DSQRT (BL)
DO 20 I=1,NDIM
UV(I)=(XX(I,2)-XX(I,1))/BL
20 CONTINUE
DO 1055 I=1,6
DO 1055 J=1,6
1055 SL(I,J)=0.D0

C..... 4-NODE OUT OF PLANE ELEMENT

IF(ICOMP.EQ.0) THEN
DO 1050 I=1,4
1050 ULL(I)=EU(1,I)*UV(1)+EU(2,I)*Uv(2)
UL(1)=ULL(1) -ULL(3)
UL(2)=ULL(2) -ULL(4)
XL (1)=0.DO
XL (2)=BL
KK=0
DO 1080 LX=1,NINT
RI=XG (LX, NINT)
KK=KK+1
CALL BOND2 (XL, B,DET, RI, NDIM, MNNE, NEL)
WI=WGT (LX, NINT) *CS*DET
EPSN=0.0D0
DO 1815 J=1,2
EPSN=EPSN+B(J) *UL(J)
1815 CONTINUE
CALL DMATBOND (EPSN, DD, RST(KK) , EMAX (1, KK) ,NEL, KK, TAU, SE, QST)
DO 1370 J=1,2
DO 1360 I=1,2
1360 SL(I,J)=SL(I,J)+B{I)*DD*B(J)*WD
1370 CONTINUE
1080 CONTINUE
DO 1620 J=1,2
DO 1620 I=1,2
SL(I+2,J)=-SL(I,J)
SL(I,J+2)=-SL(I,J)
SL(I+2,J+2)=SL(I,J)
1620 CONTINUE
DO 1640 J=1,4
DO 1640 I=1,4
IT=I*2-1
JJ=J*2-1
S(II,J0)=SL(I,J)*UvV(1l)*UV(1l)
S(II+1,JJ)=SL(I,J)*UV(2)*UV(1)
S(II,JJ+1)=SL(I,J)*UV(1)*UV(2)
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S(II+1,JJ+1)=SL(I,J)*UV(2)*UV(2)
1640 CONTINUE

DO 1650 I=5,8

IF(S(I,I).EQ.0.D0) S(I,I)=1.D0
1650 CONTINUE

RETURN

..... 6-NODE OUT OF PLANE ELEMENT

ELSEIF (ICOMP.EQ.2) THEN
DO 50 I=1,6
50 ULL(I)=EU(l,I)¥UV(1)+EU(2,I)*UV(2)
UL(1)=ULL(1) -ULL(4)
UL(2)=ULL(2) -ULL(S)
UL(3)=ULL(3) -ULL(6)
XL(1)=0.D0O
XL(2)=BL
BL=ZERO
DO 70 I=1,NDIM
BL=BL+ (XX (I,3) -XX(I,2))*(XX(I,3)-XX(I,2))
70 CONTINUE
BL=DSQRT (BL)
XL(3)=XL(2)+BL
KK=0
DO 80 LX=1,NINT
RI=XG(LX, NINT)
KK=KK+1
CALL BOND3 (XL, B, DET, RI, NDIM, MNNE, NEL)
WI=WGT (LX, NINT) *CS*DET
EPSN=0.0DO0
DO 815 J=1,3
EPSN=EPSN+B(J) *UL (J)
815 CONTINUE
CALL DMATBOND (EPSN, DD, RST (KK) , EMAX (1, KK) , NEL, KK, TAU, SE, QST)
DO 370 J=1,3
DO 360 I=1,3
360 SL(I,J)=SL(I,J)+B(I)*DD*B(J)*WTI
370 CONTINUE
80 CONTINUE
DO 620 J=1,3
DO 620 I=1,3
SL(I+3,J)=-SL(I,J)
SL(I,J+3)=-SL(I,J)
SL(I+3,J+3)=SL(I,J)
620 CONTINUE
DO 640 J=1,6
DO 640 I=1,6
II=I*2-1
JJ=J*2-1
S(II,JJ)=SL(I,J) *UV (1) *UV (1)
S(II+1,JJ)=SL(I,J)*UV(2)*UV(1)
S(IX,JJ+1)=SL(I,J)*UV(1l)*UV(2)
S(II+1,JJ+1)=SL{I,J)*UV(2)+*UV(2)
640 CONTINUE
DO 650 I=7,12
IF(S(I,I).EQ.0.D0) S(I,I)=1.DO
650 CONTINUE
ENDIF
RETURN
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END

SUBROUTINE DMATBOND (EP, DD, RRT, EMAX, NEL, KK, TAU, SE, QST)
IMPLICIT REAL*8(A-H,0-2)

COMMON /ITRN/ JST,IST

DIMENSION EMAX(11),ES(15),STR(15),SE(10),TA(10),TAU(10)
CALL STPBOND (EMAX, ES, STR, SE, TA, TAU, QST, ALP, EFGI, NEL, KK)
IF(EMAX (1) .EQ.0.D0.AND.EMAX (4) .EQ.0.D0) THEN
IF(EP.GE.0.D0) THEN

CALL ENVEL(EP, SE, TAU,QST, ALP, RRT,DD)

ELSE

CALL ENVEL(EP,SE(6),TAU(6),QST,ALP, RRT,DD)

ENDIF

RETURN

ENDIF

IF(EP.GE.ES(1)) THEN

CALL ENVEL(EP, SE, TA, QST, ALP, RRT, DD)
ELSEIF(EP.GE.ES(2) .AND.EP.LT.ES(1)) THEN

CALL TLINE(EP,ES(2),ES(1),STR(2),STR(1),DD, RRT)
ELSEIF(EP.GE.ES(9) .AND.EP.LT.ES(2)) THEN

CALL TLINE(EP,ES(9),ES(2),STR(9),STR(2),DD, RRT)
ELSEIF(EP.GT.ES(10) .AND.EP.LT.ES(9)) THEN

CALL TLINE(EP,ES(10),ES(9),STR(10),STR(9),DD, RRT)
ELSEIF(EP.GT.ES(14) .AND.EP.LE.ES(10)) THEN

CALL TLINE(EP,ES(14),ES(10),STR(14),STR(10),DD,RRT)
ELSEIF(EP.GT.ES(15) .AND.EP.LE.ES(14)) THEN

CALL TLINE(EP,ES(15),ES(14),S8TR(15),STR(14),DD, RRT)
ELSEIF(EP.LE.ES(15)) THEN

CALL ENVEL(EP,SE(6),TA(6),QST,ALP,RRT,DD)

ENDIF

RETURN

END

SUBROUTINE SMATBOND (EP, DD, RRT, EMAX, NEL, KK, TAU, SE)
IMPLICIT REAL*8(A-H,0-2Z)
COMMON /ITRN/ JST,IST
DIMENSION EMAX(1ll),ES(15),STR(15),SE(10),TA(10),TAU(10)
CALL STPBOND (EMAX, ES, STR, SE, TA, TAU, QST, ALP, EFGI, NEL, KX)
IF(EMAX (1) .EQ.0.DO.AND.EMAX(4) .EQ.0.D0) THEN
IF(EP.GT.SE(4)) THEN
EMAX (1)=EP
EMAX (3)=EP
EMAX (2)=0.D0
CALL ENERGY (SE, TAU,QST, ALP,SE (4),EP,TAU(4), RRT, EMAX (5) )
EMAX(7) =EMAX(5)
EMAX (11)=DABS( (9 .DO*EP/SE(3) /5.D0+0.1D0) *TAU(3) )
ELSEIF(EP.LT.SE(9)) THEN
EMAX (4) =EP
EMAX (2)=EP
EMAX (3)=0.D0
CALL ENERGY (SE(6),TAU(6),QST,ALP, SE(9),EP,TAU(9),
RRT, EMAX(5) )
EMAX (6) =EMAX (5)
EMAX (11)=DABS( (9 .DO*EP/SE(8) /5.D0+0.1D0) *TAU(8) )
ENDIF
RETURN
ENDIF
IF(EP.GT.ES(1)) THEN
EMAX (1) =EP
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EMAX (3)=EP
EMAX (2)=0.D0
EMAX (5) =EMAX (5) +TA(5) * (ES(2) -ES(9))
CALL ENERGY (SE,TA,QST, ALP,ES(1),EP,STR(1) ,RRT, EDUM)
EMAX (5) =EMAX (5) +EDUM
EMAX (7 ) =EMAX (5)
EMAX (8) =EMAX (8) +TA(5) * (ES(2) -ES(9))
EMAX (10) =EMAX (8)
DUM=-1.2D0* ( (EMAX (10) /EFGI) **0.67)
DAM=1.D0-EXP (DUM)
TA(10)=- (1.D0-DAM) *EMAX (11)
EMAX (11)=DABS (TA(10))+9.D0* (EP-ES (1) ) *TAU(3) /SE(3) /5.D0
EMAX (8)=0.D0
EMAX (9)=0.D0
EMAX (10)=0.DO0
ELSEIF(EP.LE.ES(1) .AND.EP.GE.ES{15)) THEN
IF(EP.GE.ES(9)) THEN
EMAX (2)=EP
EMAX (3)=0.D0
IF(EP.GT.ES(2)) THEN
EMAX (5) =EMAX (5) +TA(5) * (ES(2) -ES (9))
EMAX (8) =EMAX (8) +TA(5) * (ES(2) -ES(9) )
ELSEIF(EP.LE.ES(2)) THEN
EMAX (5)=EMAX (5) +TA(5) * (EP-ES(9) )
EMAX (8) =EMAX (8) +TA(5) * (EP-ES (9))
ENDIF
EMAX (7 ) =EMAX (5)
EMAX (10) =EMAX (8)
ELSEIF(EP.LE.ES(10)) THEN
EMAX (3) =EP
EMAX (2)=0.D0
IF(EP.LT.ES(14)) THEN
EMAX(5)=EMAX (5) +TA(10) * (ES(14) -ES(10))
EMAX (8)=EMAX (8) +TA(10) * (ES(14) -ES(10))
ELSEIF (EP.GE.ES(14)) THEN
EMAX (5)=EMAX(5) +TA(10) * (EP-ES (10) )
EMBX (8)=EMAX(8) +TA(10) * (EP-ES (10) )
ENDIF
EMAX (6)=EMAX(S)
EMAX (9) =EMAX(8)
ENDIF
ELSEIF(EP.LT.ES(15)) THEN
EMAX (4)=EP
EMAX (2) =EP
EMAX (3)=0.D0
EMAX (5) =EMAX (5) +TA(10) * (ES(14) -ES(10))
CALL ENERGY(SE(6),TA(6),QST,ALP,ES(15),EP,STR(15),RRT, EDUM)
EMAX (5) =EMAX (5) +EDUM
EMAX (6) =EMAX (5)
EMAX (8) =EMAX (8) +TA(10) * (ES (14) -ES (10))
EMAX (9) =EMAX(8)
DUM=-1.2D0* ( (EMAX(9) /EFGI) **0.67)
DAM=1.D0 -EXP (DUM)
TA(5)=(1.D0-DAM) *EMAX (11)
EMAX (11)=TA(S5) +9.DO*DABS ( (EP-ES (15) ) ) *T'AU(3) /SE(3) /5.D0
EMAX (8) =0.D0
EMAX (9)=0.D0
EMAX(10)=0.D0
ENDIF
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RETURN
END

SUBROUTINE STPBOND (EMAX,ES, STR, SE, TA, TAU, QST, ALP, EFGI, NEL, KK)
IMPLICIT REAL*8(A-H,0-Z)
COMMON /ITRN/ JST,IST
DIMENSION EMAX(1l),ES(15),STR(15),SE(10),TAU(10)
DIMENSION TA(10)
ALP=0.4
QST=15.D0
SE(4)=(TAU(1) /QST/(SE(1) **ALP) ) **(1./(1.-ALP))
TAU(4)=QST*SE (4)
SE(6)=-SE(1)
SE(7)=-SE(2)
SE (8)=-SE(3)
TAU(6)=-TAU(1)
TAU(8)=-TAU(3)
SE(9)=-SE(4)
TAU(9)=-TAU(4)
EFGI=SE (3) *TAU(3)
CALL ENERGY (SE,TAU, QST,ALP,SE(4),SE(3),TAU(4),TAU(3) , ENGI)
IF (EMAX(1) .EQ.0.D0.AND.EMAX(4).EQ.0.D0) RETURN
DUM=-1.2D0* ( (EMAX(6) /ENGI) **1.1)
DAM=1.D0-EXP (DWM)
TA(1)=(1.D0-DAM) *TAU (1)
TA(3)=(1.D0-DAM/ (2.D0-DAM) ) *TAU(3)
DUM=-1.2D0* ( (EMAX(7) /ENGI) **1.1)
DAM=1.D0-EXP (DUM)
TA(6)=(1.D0-DAM) *TAU(6)
TA(8)=(1.D0-DAM/ (2.D0-DAM) ) *TAU(8)
SE(4)=(TA(1) /QST/ (SE(1) **ALP) ) ** (1./ (1. -ALP))
TA(4)=QST*SE(4)
SE (9)=(DABS (TA(6) ) /QST/ (DABS (SE(6) ) **ALP) ) ** (1. /(1. -ALP))
SE(9)=-SE(9)
TA(9)=QST*SE(9)
DUM=-1.2D0* ( (EMAX(9) /EFGI) **0.67)
DAM=1.D0-EXP (DUM)
TA(5)=(1.D0-DAM) *EMAX (11)
DUM=-1.2D0* ( (EMAX(10) /EFGI) **0.67)
DAM=1.D0 -EXP (DUM)
TA(10)=- (1.D0-DAM) *EMAX (11)
IF(EMAX(l) .NE.0.DO) THEN
ES (1)=EMAX(1)
CALI, ENVEL(ES(1),SE,TA,QST,ALP,STR(1),DD)
STR(2)=TA(5)
ES(2)=(STR(2) -STR(1) ) /QST+ES (1)
ELSE
STR(2)=TA(S)
IF(TA(5) .GT.TA(4)) THEN
ES(2)=(TA(5) /TA(1) ) **(1./ALP)
ES(2)=ES(2) *SE(1)
ELSE
ES(2)=TA(5) /QST
ENDIF
STR(1)=STR(2)
ES(1)=ES(2)
ENDIF
STR(3)=0.D0
ES(3)=(-STR(1)) /QST+ES (1)
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STR(4)=TA(10)
ES(4)=(STR(4) -STR(1) ) /QST+ES(1)
IF(EMAX(4) .NE.0.DO) THEN
ES (15) =EMAX{4)
CALL ENVEL/(ES (15),SE(6),TA(6),QST,ALP, STR(15) ,DD)
STR(14)=TA(10)
ES(14)=(STR(14)-STR(15)) /QST+ES (15)
ELSE
STR(14)=TA(10)
IF(TA(10).LT.TA(9)) THEN
ES(14)=(DABS(TA(10) /TA(6))) ** (1. /ALP)
ES (14)=ES(14) *SE(6)
ELSE
ES(14)=TA(10) /QST
ENDIF
STR (15)=STR(14)
ES(15)=ES(14)
ENDIF
STR(13)=0.D0
ES(13)=(-STR(15) ) /QST+ES (15)
STR(12)=TA(S)
ES(12)=(STR(12)-STR(15)) /QST+ES (15)
STR(9)=TA(5)
STR(10)=TA(10)
IF(EMAX(2) .NE.0.D0) THEN
IF(EMAX(2).LT.ES(2).AND.EMAX(2) .GT.ES(12)) THEN
ES (9)=EMAX(2)
ES (10)=(STR(10) -STR(9) ) /QST+ES(9)
ELSEIF(EMAX(2) .GE.ES(2)) THEN
ES (9)=ES (2)
ES (10)=ES(4)
ELSEIF(EMAX(2) .LE.ES(12)) THEN
ES (9)=ES (12)
ES (10)=Es(14)
ENDIF
ENDIF
IF (EMAX(3) .NE.0.D0) THEN
IF(EMAX(3).LT.ES(4).AND.EMAX(3) .GT.ES(14)) THEN
ES (10) =EMAX(3)
ES (9)=(STR(9) -STR(10) ) /QST+ES (10)
ELSEIF(EMAX(3) .GE.ES(4)) THEN
ES(9)=Es(2)
ES(10)=ES(4)
ELSEIF(EMAX(3) .LE.ES(14)) THEN
ES (9)=ES (12)
ES (10)=ES(14)
ENDIF
ENDIF
RETURN
END

SUBROUTINE ENVEL(ESS, PSE, PTA,QST, ALP, STR,DD)
IMPLICIT REAL*8(A-H,0-Z)

COMMON /ITRN/ JST,1ST

DIMENSION SE(4),TA(4),PSE(4),PTA(4)

ES=DABS (ESS)

DO 100 I=1,4

SE(I)=DABS (PSE(I1))

TA(I)=DABS (PTA(I))
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100 CONTINUE

IF(ES.LE.SE(4)) THEN
STR=QST*ES
DD=QST

ELSEIF (ES.GT.SE(4) .AND.ES.LE.SE (1)) THEN
STR=TA(1) * ((ES/SE(1) ) **ALP)
DD=(ES/SE(1) ) **ALP
DD=DD*TA (1) *ALP/ES

ELSEIF (ES.GT.SE(l) .AND.ES.LE.SE(2)) THEN
STR=TA(1)
DD=0.D0

ELSEIF (ES.GT.SE(2) .AND.ES.LE.SE(3)) THEN
STR=(ES-SE(2) ) *(TA(3)-TA(1))/(SE(3) -SE(2) ) +TA(1)
DD=(TA(3)-TA(l))/(SE(3) -SE(2))

ELSEIF (ES.GT.SE(3)) THEN
STR=TA(3)
DD=0.D0

ENDIF

IF(ESS.LT.0.D0) STR=-STR

RETURN

END

SUBROUTINE ENERGY (PSE, PTAU, QST, ALP, PEP1, PEP2,
* PSG1,PSG2, ENG)
IMPLICIT REAL*8(A-H,0-Z)
COMMON /ITRN/ JST,IST
DIMENSION PSE(4),PTAU(4)
DIMENSION SE(4),TAU(4)
ALP1=ALP+1.0
EP1=DABS (PEP1)
EP2=DARBS (PEP2)
SG1=DABS (PSG1)
SG2=DABS (PSG2)
DO 100 I=1,4
SE(I)=DABS(PSE(I))
TAU(I)=DABS (PTAU(I))
100 CONTINUE
IF(EP1.LE.SE(1)) THEN
IF(EP2.LE.SE{(l)) THEN
ENG=TAU(1) * (EP2**ALP1-EP1**ALP1) /ALP1/ (SE(1) **ALP)
ENG=ENG+SG1+*SG1/2.D0/QST-SG2*SG2/2.D0/QST
ELSEIF (EP2.GT.SE(l) .AND.EP2.LE.SE(2)) THEN
ENG=TAU(1) * (SE(1) **ALP1-EP1**ALPl) /ALP1/ (SE (1) **ALP)
ENG=ENG+SG1*SG1/2.D0/QST-TAU(1) *TAU(1) /2.D0/QST
ENG=ENG+ (EP2-SE (1)) *TAU(L)
ELSEIF(EP2.GT.SE(2) .AND.EP2.LE.SE(3)) THEN
ENG=TAU(1) * (SE(1) **ALP1-EP1**ALPl) /ALP1/ (SE (1) **ALP)
ENG=ENG+SG1*SG1/2.D0/QST-SG2*SG2/2.D0/QST
ENG=ENG+ (SE(2) -SE(1) ) *TAU (1)
ENG=ENG+ (TAU(1) -SG2) *(EP2-SE(2) ) /2.D0+SG2* (EP2-SE (2) )
ELSEIF(EP2.GT.SE(3)) THEN
ENG=TAU(1) * (SE(1) **ALP1-EP1**ALP1) /ALP1l/ (SE (1) **ALP)
ENG=ENG+SG1*SG1/2.D0/QST-SG2*SG2/2.D0/QST
ENG=ENG+ (SE(2) -SE(1) ) *TAU (1)
ENG=ENG+ (TAU(1) -TAU(3)) *(SE(3) -SE(2) ) /2.D0+SG2* (EP2-SE(2))
ENDIF
ELSEIF(EP1.GT.SE(l) .AND.EP1.LE.SE(2)) THEN
IF(EP2.GT.SE{1l) .AND.EP2.LE.SE(2)) THEN
ENG=(EP2-EP1) *TAU(1)
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ELSEIF(EP2.GT.SE(2) .AND.EP2.LE.SE(3)) THEN

ENG=SG1*SG1l/2.D0/QST-SG2*SG2/2.D0/QST
ENG=ENG+ (SE (2) -EP1) *TAU(1)

ENG=ENG+ (TAU(1) -SG2) * (EP2-SE(2) ) /2.D0+SG2* (EP2-SE(2) )
ELSEIF (EP2.GT.SE(3)) THEN

ENG=SG1*SG1/2.D0/QST-SG2*SG2/2.D0/QST
ENG=ENG+ (SE(2) -EP1) *TAU(1)

ENG=ENG+ (TAU (1) -TAU(3) ) * (SE(3) -SE(2) ) /2.D0+SG2* (EP2-SE(2))
ENDIF
ELSEIF(EP1.GT.SE(2) .AND.EP1.LE.SE(3)) THEN

IF(EP2.GT.SE(2) .AND.EP2.LE.SE(3)) THEN

ENG=SG1*SGl/2.D0/QST-SG2*SG2/2.D0/QST

ENG=ENG+ (SG1-SG2) * (EP2-EP1) /2 .D0+SG2* (EP2-EP1)
ELSEIF (EP2.GT.SE(3)) THEN

ENG=SG1*SGl/2.D0/QST-SG2*SG2/2.D0/QST

ENG=ENG+ (SG1-TAU(3) ) * (SE(3) -EP1) /2.D0+SG2* (EP2-EP1)
ENDIF

ELSEIF(EP1.GT.SE(3)) THEN

ENG=SG2* (EP2-EPl)

ENDIF
RETURN

END

SUBROUTINE BOND3 (XX, B, DET, R, NDIM, MNNE, NEL)
IMPLICIT REAL*8{A-H,0-Z)
DIMENSION XX(3),B(3),H(3)

H(1)
H(2)
H(3)

-(1.D0-2.DO*R) /2.D0
-2.DO*R
(1.D0+2.DO*R) /2.D0

B(1l)=R*(R-1.D0)/2.D0

B(2)=- (R-1.D0) * (R+1.D0)
B(3)=R*(R+1.D0)/2.D0

DET=0.0D0

DO 20 K=1,3

20 DET=DET+H(K) *XX(K)
IF(DET.GT.0.00000001D0) RETURN
WRITE(50,2000) NEL

STOP

2000 FORMAT (10HO*+** ERROR,

1
2

END

S52H ZERO OR NEGATIVE JACOBIAN DETERMINANT FOR ELEMENT (,I4,
H) )

SUBROUTINE BOND2 (XX, B, DET, R, NDIM, MNNE, NEL)
IMPLICIT REAL+*8(A-H,0-Z)
DIMENSION XX(2),B(2),H(2)

H(1)
H(2)

-1.D0/2.D0
1.D0/2.D0

B(l)=-(R-1.D0)/2.D0
B(2)=(R+1.D0) /2.D0

DET=0.0D0

DO 20 K=1,2

20 DET=DET+H (K) *XX(K)
IF(DET.GT.0.00000001D0) RETURN
WRITE(50,2000) NEL

STOP

2000 FORMAT (10HO*** ERROR,

1

52H ZERO OR NEGATIVE JACOBIAN DETERMINANT FOR ELEMENT (,I4,
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2 H) )
END

SUBROUTINE UPBOND (XX, CONSTM, EMAX,NCM, NEL, EU, ELRHS, RST,
* TCOMP, NGAU, MNDOFN, MNNE, MNDOFE , NDIM, EEP)
IMPLICIT REAL*8(A-H,0-2)
COMMON /CNTL/ ISYM,IIDUM(28)
COMMON /ITRN/ JST, IST
COMMON /CONSTS/ ZERO, ONE, TWO
COMMON /XGWGT/ XG(4,4),WoT(4,4)
DIMENSION B(3), XX (NDIM, MNNE)
DIMENSION EPP(3)
DIMENSION CONSTM(NCM) , EEP (MNDOFN, MNNE)
DIMENSION EMAX(11,NGAU)
DIMENSION EU(MNDOFN,MNNE) , ELRHS (MNDOFE) , P(2)
DIMENSION RST(NGAU),UV(3),UL(3),XL(3)
DIMENSION ULL(6),TAU(10),SE(10)
PAT=2.DO*DASIN(1.D0)
US=DABS (CONSTM (1) )
YS=DABS (CONSTM(2) )
DS=DABS (CONSTM(5) )
AS=DABS (CONSTM(6) )
TAU(1)=DABS (CONSTM(10))
TAU(3)=DABS (CONSTM(11))
SE(1)=DABS (CONSTM(12) )
SE(2)=DABS (CONSTM(13) )
SE(3)=DABS (CONSTM(14) )
CS=DS*PAT
NINT=NGAU
CALL CLEAR (ELRHS, MNDOFE)
DO 5 I=1,MNNE
DO 5 J=1, MNDOFN
EEP(J,I)=0.D0
5 CONTINUE
DO 15 I=1,3
EPP(I)=0.D0
15 CONTINUE
BL=ZERO
DO 10 I=1,NDIM
BL=BL+ (XX(I, 2) -XX(I,1))* (XX(I,2)-XX(I,1))
10 CONTINUE
BL=DSQRT (BL)
DO 20 I=1,NDIM
UV(I)=(XX(I,2)-XxX(I,1))/BL
20 CONTINUE
IF(ICOMP.EQ.0) THEN
DO 1050 I=1,4
1050 ULL(I)=EU(1,I)*UV(1l)+EU(2,I)*UV(2)
UL(1)=ULL(1) -ULL(3)
UL (2)=ULL(2) -ULL(4)
XL(1)=0.DO
XL (2)=BL
KK=0
DO 1080 LX=1,NINT
RI=XG (LX, NINT)
KK=KK+1
CALL BOND2 (XL, B, DET, RT, NDIM, MNNE, NEL)
WI=WGT (LX, NINT) *CS*DET
EPSN=0.0D0
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DO 1815 J=1,2
EPSN=EPSN+B(J) *UL(J)
1815 CONTINUE
CALL DMATBOND (EPSN, DD, RRT, EMAX (1, KK) ,NEL, KK, TAU, SE, QST)
RST(KK) =RRT
DO 1900 I=1,2
1900 EPP(I)=EPP(I)+B(I)*RST(KK)*WD
1080 CONTINUE
DO 1950 I=1,2
DO 1950 J=1,2
EEP(J,I)=EPP(I)*UV(J)
1950 EEP(J,I+2)=-EEP(J,I)
RETURN
ELSEIF(ICOMP.EQ.2) THEN
DO 50 I=1,6
S0 ULL(I)=EU(1,I)*UV(1)+EU(2,I)*UV(2)
UL(1)=ULL(1) -ULL(4)
UL(2)=ULL{(2) -ULL(5)
UL (3)=ULL(3) -ULL(6)
XL(1)=0.DO
XL(2)=BL
BL=ZERO
DO 70 I=1,NDIM
BL=BL+ (XX(I,3)-XX(I,2) ) * (XX(I,3)-XX(I,2))
70 CONTINUE
BL=DSQRT (BL)
XL (3)=XL(2)+BL
KK=0
DO 80 LX=1,NINT
RI=XG(LX, NINT)
KK=KK+1
CALL BOND3 (XL, B, DET, RI, NDIM, MNNE, NEL)
WI=WGT (LX, NINT) *CS*DET
EPSN=0.0D0
DO 815 J=1,3
EPSN=EPSN+B(J) *UL(J)
815 CONTINUE
CALL DMATBOND (EPSN, DD, RRT, EMAX (1, KK) , NEL, KK, TAU, SE, QST)
RST(KK)=RRT
DO 900 I=1,3
900 EPP(I)=EPP(I)+B(I)*RST (KK) *WT
80 CONTINUE
DO 950 I=1,3
DO 950 J=1,2
EEP(J, I)=EPP(I)*UV(J)
950 EEP(J,I+3)=-EEP(J,I)
ENDIF
RETURN
END

SUBROUTINE SSBCND (XX, CONSTM, EMAX, NCM, NEL, EU, RST,
* JCOMP, NGAU, MNDOFN, MNNE , MNDOFE, NDIM)
IMPLICIT REAL*8(A-H,0-2)

COMMON /CONTL/ ISYM,IIDUM(28)

COMMON /ITRN/ JST,IST

COMMON /QONSTS/ ZERO, ONE, TWO

COMMON /CNTL1/ TAB

COMMON /XGWGT/ XG(4,4),WGT(4,4)

DIMENSION B(3), XX (NDIM, MNNE)
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DIMENSION CONSTM (NCM)
DIMENSION EMAX(11,NGAU)
DIMENSION EU (MNDOFN,MNNE)
DIMENSION RST(NGAU),UV(3),UL(3),XL(3)
DIMENSION ULL(6),TAU(10),SE(10)
PAT=2.DO*DASIN(1.DO)
US=DABS (CONSTM(1) )
YS=DABS (CONSTM(2) )
DS=DARBS (CONSTM (5) )
AS=DABS (CONSTM(6) )
TAU(1)=DABS (CONSTM (10))
TAU(3)=DABS (CONSTM(11))
SE (1) =DARBS (CONSTM({12) )
SE (2)=DABS (CONSTM(13) )
SE(3)=DABS (CONSTM(14))
CS=DS*PAT
NINT=NGAU
BL=ZERO
DO 10 I=1,NDIM
BL=BL+ (XX(I,2)-XX(I,1))*(XX(TI,2)-XX(I,1))
10 CONTINUE
BL=DSQRT (BL)
DO 20 I=1,NDIM
UV(I)=(XX(I,2)-XX(I,1))/BL
20 CONTINUE
IF(ICOMP.EQ.0) THEN
DO 1050 I=l,4
1050 ULL(I)=EU(1,I)*UV(1)+EU(2,I)*UV(2)
UL(1)=ULL(1) -ULL(3)
UL (2)=ULL(2) -ULL{4)
XL,(1)=0.D0
XL (2)=BL
KK=0
DO 1080 LX=1, NINT
RI=XG(LX, NINT)
KK=KK+1
CALL BOND2 (XL, B, DET, RT, NDIM,MNNE, NEL)
WI=WGT (LX, NINT) *CS*DET
EPSN=0. 0D0
DO 1815 J=1,2
EPSN=EPSN+B (J) *UL(J)
1815 CONTINUE
IF(JST.NE.0) THEN
CALL SMATBOND (EPSN, DD, RST (KK) , EMAX (1, KK) ,NEL, XK, TAU, SE)
ENDIF
DDUM=0 . DO
WRITE(42) EPSN,RST(KK)
1080 CONTINUE
RETURN
ELSEIF (ICOMP.EQ.2) THEN
DO 50 I=l1,6
50 ULL{I)=EU(1,I)*UV(1)+EU(2,I)*UV(2)
UL{1)=ULL{1l) -ULL(4)
UL (2)=ULL(2) -ULL(5)
UL (3)=ULL(3) -ULL(6)
XL(1)=0.DO
XL (2)=BL
BL=ZERO
DO 70 I=1,NDIM
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BL=BL+ (XX(I,3) -XX(I, 2) ) * (XX(I, 3) -XX(I,2))
70 CONTINUE
BL=DSQRT (BL)
XL (3)=XL(2)+BL
KK=0
DO 80 LX=1,NINT
RI=XG(LX, NINT)
KK=KK+1
CALL BOND3 (XL, B, DET, RI, NDIM, MNNE, NEL)
WI=WGT (LX, NINT) *CS*DET
EPSN=0.0D0
DO 815 J=1,3
EPSN=EPSN+B(J) *UL(J)
815 CONTINUE
IF(JST.NE.O) THEN
CALL SMATBOND (EPSN, DD, RST (KK) , EMAX (1, KK) , NEL, KK, TAU, SE)
ENDIF
DDUM=0 .DO
WRITE (42) EPSN, RST (KK)
80 CONTINUE
ENDIF
RETURN
END

SUBROUTINE SOLVE(REALA, INTA, A)
IMPLICIT REAL*8 (A-H,0-Z)

COMMON /CNTL/ ISYM, NUMEL, IRESOL,JDUM(8), NNEGP,NPOSP, NRHSF,
* IDUM(15)

DIMENSION A(l)

NNEGP = 0

NPOSP = 0

IF(IRESOL .EQ. 0.OR.IRESOL.EQ.2) CALL COMPLT(REALA, INTA,A)
IF(IRESOL .EQ. 1) CALL RESOL(REALA, INTA,A)

RETURN

END

SUBROUTINE COMPLT (REALA, INTA, A)

INITIATE FORWARD ELIMINATION OF LHS AND RHS
FOLLOWED BY BACKSUBSTITUTION

IMPLICIT REAL*8 (A-H,0-Z)
COMMON/ CNTL/ ISYM, NUMEL, IRESOL, NRHS , NTAPEB, NTAPEU, NTAPEL,

* MA, IWRT, IPRINT, IERR, NNEGP, NPOSP, NRHSF,
* IB,1U,IL,IFB,IFU,IFL,MBUF,MW,MKF,
* MELEM, MFWR, MB, MDOF, MFW, MLDEST

DIMENSION A(l)
CALL SECOND(TO0)
IERR = 1
N = NUMEL+MILDEST+2*MDOF
IF(ISYM .GT. 1) GO TO 10
MELEM = (MDOF* (MDOF+1))/2+MDOF*NRHS
MKF = (MFW* (MFW+1))/2
GO 'TO 20

10 MELEM = MDOF* (MDOF+NRHS)
MKF = MFW*MFW

20 MFWR = MKF+MFW*NRHS
MW = MELEM+MFWR
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aaonn

60

1000
1010
1020
1030

1040
1043
1045
1060

*

* % % 4

*
*

MBUF = MA-MW-N

IF(MBUF .LT. MFW+NRHS) GO TO 70

IAL = 1+NWEL

IAM = TAL+MLDES
IAN = IAM+MDOF
IAE IAN+MDOF

T

IAF = IAE+MELEM

IAB = IAF+MFWR

CALL FRWCP(REALA, INTA,

A(l),A(IAL),A(IAM),A(IAN),A(IAE),A(IAF),A(IAB))

IF(IRESOL.EQ.2) RETURN

CALL SECOND(TF)
DT = TF-TO

IF(IERR .NE. 1) RETURN
IF(NRHS .EQ. 0) GO TO 60
CALL BCKWRD (REALA, INTA,

A(1),A(IAL),A(IMM),A(IAN),A(IAE),A(IAF),A(IAB),
A(IAB))

CALL SECOND(TB)
DT = TB-TF
RETURN

IERR = 6

FORMAT(2(/), 5X,29HSYMMETRIC FORWARD ELIMINATION
FORMAT(2(/), 5X,31HUNSYMMETRIC FORWARD ELIMINATION
5X, 22HRESOLUTION INACTIVATED

FORMAT (
FORMAT (

FORMAT (
FORMAT (
FORMAT(

RETURN
END

4X,21H
4X,21H
4X, 21H
4X,21H
4X,21H
4X,21H

10X, 2SHTIME IN FORWARD ELIMINATION:

INTEGER ARRAY:

TOTAL STORAGE:

10X, 18HWRITES TO NTAPEU:
10X, 18HWRITES TO NTAPEL:
FORMAT(2(/), 5X,32HERROR: NOT ENOUGH ROOM IN BUFFER )

SUBROUTINE RESOL (REALA, INTA,A)

INITIATE FORWARD ELIMINATION OF RHS ONLY
FOLIOWED BY BACKSUBSTITUTION

IMPLICIT REAL*8 (A-H,0-Z)

/)
I/)
II7I/I
II7I/I
.17, /,
II7I/I
17,7,
. I7)

. 14)
. I4)

COMMON /CNTTL/ ISYM, NUMEL, TRESOL, NRHS , NTAPEB, NTAPEU, NTAPEL,

MA, TWRT, IPRINT, IERR, NNEGP, NPOSP, NRHSF,
1B, IU, IL, IFB, IFU, IFL, MBUF, MW, MKF,
MELEM, MFWR, MB, MDOF , MFW, MLDEST

DIMENSION A(l)
CALL SECOND(TO0)
REWIND NTAPEB
REWIND NTAPEU

IF(ISYM .EQ. 3) REWIND NTAPEL

IF(ISYM .EQ. 2) GO TO 30
IF(NRHS .EQ. 0) GO TO 40

IERR = 1
IFB = 0

N = NUMEL+MLDEST+2*MDOF

MELEM = MDOF*NRHS

MFWR = MFW*NRHS
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30

40

45
50
1000
1010
1030

1040
1045
1060
1070
1080

QOO

MB = MW-MELEM-MFWR

IF(MB .LT. 1) GO TO 45

IAL = 1+NUMEL

IAM = IAL+MLDEST

IAN = IAM+MDOF

IAE = LAN+MDOF

IAF = IAE+MELEM

IABR = IAF+MFWR

IABF = IABR+MB

CALL FRWRS (REALA, INTA,
A(1l),A(IAL),A(IAM),A(IAN),A(IAE),A(IAF),A(IABR),

* A(IABF))
CALIL, SECOND({TF)
DT = TF-TO
CALL BCKWRD (REALA, INTA,
* A(l) ,A(IAL),A(IMM),A(IAN),A(IAE) ,A(IAF),A(IABR),
* A(IABF))
CALL SECOND(TB)
DT = TB-TO
GO TO 50
IERR = 3
RETURN
IERR = 4
RETURN
IERR = 5
RETURN
FORMAT(2(/), 5X,26HSYMMETRIC RESOLUTION WITH ,I3,4H RHS, /)
FORMAT(2(/), 5X,28HUNSYMMETRIC RESOLUTION WITH ,I3,4H RHS,/)
FORMAT ( 4X, 21H INTEGER ARRAY: , 17,7,
* 4X,21H REAL ARRAY: ,I17,/,
* 4X,21H ELEMENT: ,I7,/,
* 4X,21H FRONT: ,I17./,
* 4X,21H RHS BUFFER: ,I7,/,
* 4X,21H LHS BUFFER: . 17,7,
* 4X,21H TOTAL STORAGE: ,I7)
FORMAT( 10X, 29HTIME IN FORWARD ELIMINATION: ,D9.2)
FORMAT( 10X, 18HWRITES TO NTAPEB: ,I4)

FORMAT (2 (/), SX,41HERROR: UNSYMMETRIC RESOLUTION INACTIVATED
FORMAT(2(/), 5X,28HERROR: RESOLUTION WITH 0 RHS )
FORMAT(2 (/) ,5X, 19HERROR: TOO MANY RHS )

END

SUBROUTINE FRWCP (REALA, INTA,
* LEIM, LDEST,MDEST, NDEST, ELEM, FRNT, BUF)

FORWARD ELIMINATION OF BOTH LHS AND RHS
CALLS SOLIN FOR DEST. VECTORS, ELEMENT LHS AND RHS'S

IMPLICIT REAL*8 (A-H,0-2)
COMMON/CNTL/ISYM, NUMEL, TRESOL, NRHS , NTAPEB, NTAPEU, NTAPEL,

* MA, TWRT', IPRINT, IERR, NNEGP, NPOSP, NRHSF,
1B, IU, IL, IFB, IFU, IFL, MBUF, MW, MKF,
* METLEM, MFWR, MB, MDOF, MFW, MLDEST
DIMENSION LDEST(1l),MDEST(1),NDEST(1l),ELEM(1),FRNT(1l),BUF(1),
* LELM(1)

REWIND NTAPEU

IF(ISYM .EQ. 3) REWIND NTAPEL
IFU = 0

IFL =0
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10
20
30

40

50

60

70

75

80

90

100

110
120
150

*

NRHSF = NRHS

IU =1

IL, = MBUF

NFW = 0

LFW = 0

DO 200 IEL=1,NWMEL

CALL SOLIN(REALA, INTA, IEL,3,NRHS, NUMDES, LDEST, ELEM)

CALL DEST(NUMDES, LDEST, NFW, NDOF, NE, MDEST, NDEST)

IF{LFW .GT. NFW) NFW = LFW

IF(ISYM .EQ. 1) CALI SYMASM(NDOF,LFW,NFW,MDEST, ELEM, FRNT)

IF(ISYM .GT. 1) CALI UNSASM (NDOF,LFW,NFW,MDEST, ELEM, FRNT)

KFW = NFW

IF(NRHS .EQ. 0) GO TO 30

IF(ISYM .GT. 1) GO TO 10

MKE = (NDOF* (NDOF+1))/2

GO TO 20

MKE = NDOF*NDOF

CALL SEMRHS ( LFW, NFW, NDOF, NRHS , MFW, MDEST, ELEM(MKE+1) , FRNT (MKF+1) )

IF(NE .EQ. 0) GO TO 155

DO 150 IE=1,NE

N = JU+NFW+NRHS-1

IF(N .LE. IL) GO TO 40

CALL TOUT(1, IU, IFU,NTAPEU, BUF)

Iu=1

M= IU

IF(ISYM .EQ. 3) GO TO 50

IF(ISYM .EQ. 2) CALL UNSEIM(IEL,KFW,NFW,NDEST(IE), FRNT, BUF (IU))

IF(ISYM .EQ. 1) CALL SYMELM(IEL,NFW, NDEST (IE), FRNT, BUF (IU))

IU = TU+NRHS+NFW

GO TO 70

N = IU+NFW+NRHS-1

IF(N .LE. IL) GO TO 60

CALL TOUT (IL,MBUF, IFL, NTAPEL, BUF (IL+1))

IL = MBUF

CALL UNSELM(IEL, KFW, NFW, NDEST (IE) , FRNT, BUF (IU) )

IU = TU+NRHS+NFW

IF(IERR .EQ. 1) GO TO 75

PRINT 1000,IEL

RETURN

IF(NRHS .EQ. 0) GO TO 90

IF(ISYM .GT.1l) GO TO 80

CALL ELMRHS (NFW,MFW, NRHS, NDEST(IE) , 1, FRNT (MKF+1) , BUF (M),
BUF (M+NFW) )

GO TO 120

CALL ELMRHS (NFW,MFW, NRHS, NDEST (IE) , KFW, FRNT (MKF+ 1) , FRNT (NFW) ,

* BUF (M+NFW) )

IF(ISYM .EQ. 2) GO TO 120
IF(ISYM .NE. 3) GO TO 120
IF(IL-NFw+1 .GE. N) GO TO 100
CALL TOUT(l, IU, IFU,NTAPEU, BUF)

IU=1
M = NFW
N = NFW-1

DO 110 J=1,N
BUF(IL) = FRNT (M)
IL = IL-1

M = M+KFW
CONTINUE

NFW = NFW-1
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155

160
170
200

210

1000

10

20

30

CONTINUE

LFW = NFW

LEIM(IEL) = LFW

IF(ISYM .EQ. 1 .OR. NE .EQ. 0) GO TO 200

N = KFW

M = NFW+1

DO 170 I=2,NFW

DO 160 J=1,NFW

FRNT' (M) = FRNT(N+J)

M = M+l

N = N+KFW

CONTINUE

IB = IU

IF(IWRT .EQ. 0 .AND. IFU .EQ. 0) GO TO 210
CALL TOUT(1, IU,IFU,NTAPEU, BUF)

BACKSPACE NTAPEU

IF(ISYM .NE. 3) RETURN

IF(IWRT .EQ. 0 .AND. IFL .EQ. 0) RETURN
CALL TOUT(IL,MBUF, IFL,NTAPEL, BUF (IL+1))
FORMAT(//,5X, '"ERROR: ZERO PIVOT IN ELEMENT:',
* I5)

RETURN

END

SUBROUTINE FRWRS (REALA, INTA,

* LELM, LDEST, MDEST, NDEST, ELEM, FRNT, B, BUF)

FORWARD ELIMINATION OF RHS'S ONLY
CALLS SOLIN FOR DEST. VECTORS AND ELEMENT RHS'S

IMPLICIT REAL*8 (A-H,0-2)

COMMON/ CNTL/ ISYM, NUMEL, IRESOL, NRHS, NTAPEB, NTAPEU, NTAPEL,

* MA, IWRT, IPRINT, IERR, NNEGP, NPOSP, NRHSF,
1B, IU, IL, IFB, IFU, IFL, MBUF, MW, MKF,
MELEM, MFWR, MB, MDOF, MFW, MLDEST

DIMENSION LDEST(1),MDEST(1),NDEST(1),ELEM(1), FRNT(1),B(1),

* BUF(1) ,LEIM(1)

IB =1

NFW = 0

IF(ISYM .EQ. 3) GO TO 10

INC = 1

NT = NTAPEU

IFG = IFU

IS =1

ILL = IU-1

IX=0

GO TO 20

INC = -1

NT = NTAPEL

IFG = IFL

IS = MBUF

ILL = IL+1

IX = 1

CONTINUE

IF(IFG .EQ. 0) GO TO 30

CALL TIN(IX,IS,ILL,NT,BUF)

LFW = 0

DO 100 IEL =1,NUMEL

CALL SOLIN(REALA, INTA, IEL, 2, NRHS, NUMDES, LDEST, ELEM)
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CALL DEST (NUMDES, LDEST, NFW, NDOF, NE, MDEST , NDEST)
IF(LFW .GT. NFW) NFW = LFW

CALL SEMRHS (LFW, NFW, NDOF, NRHS, MFW, MDEST, ELEM, FRNT)
IF(NE .EQ. 0) GO TO 90

DO 70 IE=1,NE

N = IB+NRHS-1

IF(N .LE. MB) GO TO 40

CALL TOUT(1, IB,IFB,NTAPEB,B)

IB=1

IF(ISYM .GT. 1) GO TO 50

IF(IS .LE.ILL) GO TO 60

IF(IEL.EQ.NUMEL.AND.IE.EQ.NE.AND. (ILL-IS).EQ.1l) GOTO 60

CALL TIN(IX,IS,ILL,NT,BUF)

GO TO 60

IF(IS .GE. ILL) GO TO 60
IF(IEL.EQ.NUMEL.AND.IE.EQ.NE.AND. (ILL-IS) .EQ.1) GOTO 60
CALL TIN(IX,IS,ILL,NT,BUF)

CONTINUE

CALL ELMRHS (NFW, MFW, NRHS, NDEST (IE) , INC, FRNT, BUF (IS),B(IB))
IB = IB+NRHS

IF(ISYM .EQ. 1) IS = IS+NFW+NRHSF

IF(ISYM .EQ. 3) IS IS-NFW+1

NFW = NFW-1

CONTINUE

CONTINUE

LFW = NFW

LEIM(IEL) = LFW

CONTINUE

IF(IFU .EQ. 0) RETURN

REWIND NTAPEU

DO 110 I=1,IFU

READ(NTAPEU) IU, (BUF(II),II=1,IU)
It=1
RETURN
END
SUBROUTINE BCKWRD (REALA, INTA,
A LELM, LDEST, MDEST, NDEST, ELEM, FRNT, B, U)
BACKSUBSTITUTION

CALLS SOLIN FOR DEST. VECTORS
PASSES ELEMENTAL SOLUTIONS TO SOLOUT

IMPLICIT REAL*8 (A-H,0-Z)
COMMON /CONTL/ ISYM,NUMEL, IRESOL,NRHS, NTAPEB,NTAPEU, NTAPEL,

* MA, IWRT, IPRINT, IERR, NNEGP, NPOSP, NRHSF,
* IB,IUU, IL, IFB, IFU, IFL, MBUF, MW, MKF,
bl MELEM, MFWR, MB, MDOF , MFW, MLDEST

DIMENSION LDEST(1) ,MDEST(1),NDEST(1),ELEM(1),FRNT(1),B(1),U(1)
* . LEIM(1)
IU = TUWU
JEL = NUMEL+1
IB = IB-NRHS
DO 100 IEL~1,NUMEL
JEL = JEL-1
CALL SOLIN(REALA, INTA, JEL, 1, NRHS, NUMDES, LDEST, ELEM)
CALL DEST(NUMDES, LDEST, NFW,NDOF, NE, MDEST, NDEST)
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IF(J=EL .EQ. 1) GO TO 7

LFW = LEIM(JEL-1)

IF(LFW .GT. NFW) NFW = LFW
7 CONTINUE

NFW = NFW-NE+1

IF(NE .BEQ. 0) GO TO 35

J = NE+1
DO 30 I=1,NE
J=4J-1

IF(IU .GT. 1) GO TO 10
BACKSPACE NTAPEU
READ (NTAPEU) IU, (U(II),II=1,IU)
BACKSPACE NTAPEU
IU = JU+1
10 IU = IU-NFW-NRHSF
IF(IRESOL .EQ. 1) GO TO 20
N = TU+NFW
CALL, ELMSOL (NFW, MFW,NRHS,NDEST(J),U(IU),U(N),FRNT(1))
GO TO 30
20 IF(IB .GE. 1) GO TO 25
BACKSPACE NTAPEB
READ (NTAPEB) IB, (B(II),II=1,IB)
BACKSPACE NTAPEB
IB = IB-NRHS+1
25 CONTINUE
CALL: ELMSOL (NFW, MFW, NRHS ,NDEST (J) , U(IU),B(IB),FRNT(1))
IB = IB-NRHS
30 NFW = NFW+1
35 DO 40 I=1,NDOF

K=20
L=20
M = MDEST(I)

DO 40 J=1,NRHS

ELEM(K+I) = FRNT(L+M)

K = K+NDOF
40 L = L+MFW

CALL SOLOUT (REALA, INTA, JEL, NDOF, NRHS, ELEM)
100 CONTINUE

RETURN

END

SUBROUTINE SYMASM (NDOF, LFWX, NFWX, MDEST, ELLHS, FLHS)
ASSEMBLES THE LHS FOR SYMMETRIC MATRICIES

IMPLICIT REAL*8 (A-H,0-Z)
DIMENSION MDEST(1), ELLHS(1),FLHS(L)
LFW = LFWX
NFW = NFWX
IF(NFW .EQ. LFW) GO TO 20
MI = (LFW* (LFW+1))/2+1
MJ = (NFW* (NFW+1)) /2
DO 10 I=MI,MJ
10 FLHS(I) = 0.DO
20 N =1
DO 50 I=1,NDOF
MI = MDEST(I)
DO 50 J=1,I
MJ = MDEST(J)
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MK = MAXO (MI,MJ)

MJ = MINO (MI,MJ)

MK = (MK*(MK-1))/2+MJ

FLHS (MK) = FLHS (MK) +ELLHS (N)
50 N = N+1

RETURN

END

SUBROUTINE UNSASM (NDOF, LFWX, NFWX, MDEST, ELLHS, FLHS)
ASSEMBLES LHS FOR UNSYMMETRIC MATRICIES

IMPLICIT REAL*8 (A-H,0-Z)
DIMENSION MDEST(1),ELLHS(1),FLHS (1)
LFW = LFWX
NFW = NFWX
IF(NFW .EQ. LFW) GO TO 40
MI = LFW*NFW+1
MJ = NFW*NFW
MK = LFW*LFW+1
DO 10 I=MI,MJ
10 FLHS(I) = 0.D0
IF(LFW .EQ. 0) GO TO 40
MJ = NFW-LFW
DO 30 I=l1,LFW
DO 20 J=1,MJ
MI = MI-1
20 FLHS(MI) = 0.DO
DO 30 J=1,LFW
MI = MI-1
MK = MK-1
30 FLHS(MI) = FLHS (MK)
MI = NFW*NFW
40 N=1
DO 50 I=1,NDOF
MI = MDEST(I)
MK = (MI-1)*NFW
DO 50 J=1,NDOF
MJ = MDEST(J)
ML = MK+MJ
FLHS (ML) = FLHS (ML) +ELLHS (N)
50 N = N+1
RETURN
END

SUBROUTINE SEMRHS (LFW, NFW, NDOF, NRHS, MFW, MDEST, ELRHS, FRHS)
ASSEMBLES RHS'S

IMPLICIT REAL*8 (A-H,0-2)
DIMENSION MDEST(1),ELRHS (1), FRHS (1}
N=1
DO 70 IN=1,NRHS
IA = (IN-1)*MFW
IF(NFW .EQ. LFW) GO TO 15
M = LFW+1
DO 13 TI=M,NFW
13 FRHS (IA+I) = 0.DO
15 CONTINUE
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DO 50 I=1,NDOF
J = IA+MDEST(I)
FRHS (J) = FRHS (J) +ELRHS (N)
50 N = N+1
70 CONTINUE
RETURN
END

SUBROUTINE SYMEIM(IEL,NFWX, IDX, FLHS, U}
ELIMINATION OF ONE EQUATION (ID) FOR SYMMETRIC MATRICIES
IMPLICIT REAL*8 (A-H,0-Z)

COMMON /CNTL/ IDUM(9), IPRINT, IERR,NNEGP,NPOSP,IIDUM(16)
DIMENSION FLHS(1),U(1)

ID = IDX
NFW = NFWX
MP=(ID* (ID+1))/2
IDM = ID-1

IDP = ID+l

M = MP-ID+1
K=1

PIVOT = FLHS (MP)
IF(IPRINT .GE. 2) PRINT 200, IEL,NFW, ID, PIVOT
200 FORMAT(5X, 17HIEL,NFW,ID,PIVOT ,3I5,D13.4)
U(ID) = PIVOT
IF(ABS(PIVOT) .LE. 1.D-30) GO TO 90
IF(PIVOT .LT. 0.D0) NNEGP = NNEGP+1
IF(PIVOT .GT. 0.D0) NPOSP = NPOSP+1
IF(IDM .EQ. 0) GO TC 30
DO 20 I=1,IDM
S = FLHS (M)
U(I) = S/PIVOT
DO 10 J=1,I
FLHS (K) = FLHS (K) -S*U(J)
10 K=K+1
20 M=M+1
30 M=MP
K=0
IF(IDP .GT. NFW) GO TO 100
DO 60 I=IDP,NFW

NN = M-ID
M = M+ID+K
N = M-ID
S = FLHS (M)

U(I) = S/PIVOT

IF(IDM .BEQ. 0) GO TO 50

DO 40 J=1,IDM
40 FLHS(NN+J) = FLHS (N+J) -S*U(J)
50 NN = NN-1

DO 55 J=IDP,I
55 FLHS (NN+J) = FLHS(N+J) -S*U(J)
60 K=K+1

GO TO 100
90 IERR = 2
100 RETURN

END

SUBROUTINE UNSELIM(IEL,KFWX,NFWX, IDX, FLHS, U)
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ELIMINATION OF ONE EQUATION (ID) FOR UNSYMMETRIC MATRICIES

IMPLICIT REAL*8 (A-H,0-Z)
COMMON /CNTL/ IDUM(9),IPRINT, IERR,NNEGP,NPOSP, IIDUM(16)
DIMENSION FLHS(1),U(l)

ID = IDX
KFW = KFWX
NFW = NFWX
IDM = ID-1
IDP = ID+1
K = IDM*KFW
MP = K+ID

PIVOT = FLHS (MP)

IF(IPRINT .GE. 2) PRINT 200, IEL,NFW,ID,PIVOT
FORMAT (5X, 17HIEL,NFW, ID, PIVOT  ,315,D13.4)
IF(ABS(PIVOT) .LE. 1.D-30) GO TO 90
IF(PIVOT .LT. 0.D0) NNEGP = NNEGP+1
IF(PIVOT .GT. 0.D0) NPOSP = NPOSP+1

DO 5 I=1,NFW

U(I) = FLHS (K+I)

K=0

KK = 0

IF(IDM .EQ. 0) GO TO 40

DO 30 I=1,IDM

S = FLHS (ID+K) /PIVOT

DO 10 J=1,IDM

M = J+K
FIHS (M) = FLHS (M) -S*U(J)
M = K-1

IF(IDP .GT. NFW) GO TO 25
DO 20 J=IDP,NFW

FLHS (J+M) = FLHS (J+K) -S*U(J)
K = K+KFW

FLHS (K-KFW+NFW) = S

K=K+KFW

IF(IDP .GT. NFW) GO TO 100
DO 70 I=IDP,NFW

S = FLHS (ID+K) /PIVOT

M = K-KFW

IF(IDM .EQ. 0) GO TO 55

DO 50 J=1,IDM

FLHS (J+M) = FLHS (K+J) -S*U(J)
M=M-1

DO 60 J=IDP,NFW

FLHS (M+J) = FLHS (K+J)-S*U(J)
FLHS (K-KFW+NFW) = S

K = K+KFW

GO TO 100

IERR = 2

CONTINUE

RETURN

END

SUBROUTINE ELMRHS (NFW,MFW, NRHS, ID, INC, FRHS, U, B)
ELIMINATICN OF RHS'S FOR EQUATION (ID)
IMPLICIT REAL*8 (A-H,0-2)
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COMMON /CNTL/ ISYM,IIDUM(28)
DIMENSION FRHS (1),U(1l),B(1)

IDM = ID-1

IDP = ID+1

M =0

DO 50 IN = 1,NRHS
IU =1

S = FRHS (IM+ID)
B(IN) = s

IF(IDM .EQ. 0) GO TO 25
DO 20 I=1,IDM
II = IM+I
FRHS(II) = FRHS (II)-S*U(IU)
20 IU=IU+INC
25 IF(ISYM .EQ. 1) IU = IU+1
IF(IDP .GT. NFW) GO TO S0
DO 30 I=IDP,NFW
TT = IM+I
FRHS(II-1) = FRHS(II)-S*U(IU)
30 IU = IU+INC
50 IM = IM+MFW
RETURN
END

SUBROUTINE ELMSOL (NFW, MFW,NRHS, IDX, U, B, X)
CALCULATES SOLUTION FCR ONE DOF SPECIFIED BY (ID)
IMPLICIT REAL¥*8 (A-H,0-Z)

COMMON /CNTL/ ISYM, IIDUM(28)
DIMENSION U(1l),B(1),X(1)

ID = IDX
IDM = ID-1
IDP = ID+1
IF(ISYM .GT. 1) GO TO &5
Fl = U(ID)
F2 = 1.D0
GO TO 7

5 Fl = 1.
F2 = U(ID)

7 CONTINUE
DO 40 IN=1,NRHS
IU = NFW
JA = (IN-1)*MFW
IA = JA+NFW-1

S = B(IN)/F1
IF(IDP .GT. NFW) GO TO 20
DO 10 I=IDP,NFW
X(IAa+l) = X(IAn)
S = S-U(IU)*X(IAn)
IA = IA-1
10 IU = IU-1
20 IU = IU-1
IF(IDM .LT. 1) GO TO 40
DO 30 I=1,IDM
S = S-U(IU)*X(IA)
IA = IA-1
30 1IU = IU-1
40 X(JA+ID) = S/F2
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RETURN
END

SUBROUTINE DEST (ND, LDEST, NFW,NDOF, NEE, MDEST, NDEST)

CONVERTS NODAL DEST. VECTORS TO DOF DEST. VECTORS
EQUATIONS TO BE ELIMINATED ARE WRITTEN TO NDEST
GIVING CURRENT LOCATION IN FRONT

IMPLICIT REAL*8 (A-H,0-Z)

DIMENSION LDEST(1l),MDEST(1l),NDEST(1)
COMMON /CNTL/ IDWM(9), IPRINT,IIDUM(19)
MODR(I,J) = I-I/J*J

NFW = 0

NDOF 0

g
]
O il -

DO 50 I=1,ND

M = MODR{(LDEST(I),10)

N = MODR(ILDEST(I), 100)/10

NDOF = NDOF+N

IF(M .GE. 1) NE = NE+N

L = LDEST(I)/100-1

DO 10 J=1,N

MDEST (KM) = L+J

IF(M .EQ. 0) GO TO 10

NDEST(KN) = L+J

KN = KN+1

KM = KM+l

L = MDEST(KM-1)

IF(L .GT. NFW) NFW = L

CONTINUE

IF(NE .EQ. 0) GO TO 80

DO 70 I=1,NE

Jd =TI+l

DO 70 L=J,NE

IF(NDEST(I) .LT. NDEST(L)) NDEST(L) = NDEST(L)-1

CONTINUE

NEE = NE

IF(IPRINT .LE. 2) RETURN

FORMAT(/1X, 'IN DEST: NODAL DESTINATION VECTORS',
10I17,10(/,35X,1017))

FORMAT (11X, *DOF DESTINATION VECTORS®, 10I7,10(/,35X,10I7))

FORMAT (9X, 'ELIM. DESTINATION VECTORS',10I7,10(/,35X,10I7))

RETURN

END

SUBROUTINE TIN(L,I,J,NT,B)
READS RHS BUFFER TAPE
IMPLICIT REAL*8 (A-H,0-Z)
DIMENSION B(1l)

READ(NT) K, (B(II),II=1,K)
IF(L .GT. 0) GO TO 5

I=1
J =K
RETUxN
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SUBROUTINE TOUT(I,J,IF,NT,B)
WRITES ALL BUFFERS TO TAPE

IMPLICIT REAL*8 (A-H,0-Z)
DIMENSION B(1)

IF(J .EQ. I) RETURN
K=J1I

IF = JF+]

WRITE(NT) K, (B(II),II=1,K)
RETURN

END

SUBROUTINE PREFNT(INTA, IN, IA,MS,MU,MR)
INITIATE PREFRONT

IMPLICIT REAL*8 (A-H,0-Z)

COMMON /CNTL/ISYM, NUMEL, IDUM(24) ,MDOF, MFW, MLDEST
DIMENSION IN(1),IA(1)

CALL SECOND{(TO)

NFN = 0

MLDEST = 0

DO 10 I=1,NWMEL

IF(IN(I) .GT. MLDEST) MLDEST = IN(I)

NFN = NFN+IN(I)

CALL DESVEC(INTA,NFN, IN, IA, IA(NFN+1), IA(2*NFN+1) )

MR = MDOF+MFW+1

MS = NUMEL+MLDEST+2*MDOF+ (MDOF* (MDOF+1) ) /2+ (MFW* (MFW+1) ) /2+MFW
MU = NUMEL+MLDEST+ 2 *MDOF+MDOF*MDOF +MFW*MFW+MFW

CALL SECOND(T1)

DT = T1-TO

RETURN

END

SUBROUTINE DESVEC(INTA,NFNX, IN, IA, IB, IC)
CALCULATION OF DESTINATION VECTORS FROM NICKNAMES

IMPLICIT REAL*8 (A-H,0-2)

COMMON /CNTL/ ISYM,NUMEL,IDUM(24) ,MDOF,MFW, MLDEST
DIMENSION IN(1l),IA(1),IB(1l),IC(1)

MODR(I,J) = I-I/J*J

NFN = NFNX
MDOF = 0

MFW =

IDES = 1

IP =0

JDN = 0

DO 10 I=1,NFN
IB(I) =0

DO 100 IEL~=1,NUMEL
N = IN(IEL)
NI =0

IPs = IP
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NE = 0

NTT = 0

DO 60 ID=1,N
IP = IP+1

INIC = IA(IP)
NDOF = MODR(INIC, 10)
NT = NT+NDOF
IF(IB(IP) .GT. 0) GO TO 20
JDES = IDES
IB(IP) = IDES*100+NDOF*10
IDES = IDES+NDOF
IF(IDES-1 .GT. MFW) MFW = IDES-1l
GO TO 30
20 JDES = IB(IP)
IB(IP) = IB(IP)*100+NDOF*10
30 JP = IPS+N+1
IF(JP .GT. NFN) GO TO 45
DO 40 JD=JP,NFN
IF(INIC .EQ. IA(JD)) GO TO 50
40 CONTINUE
45 IB(IP) = IB(IP)+l
IC(IPC) = JDES
IC(IPC+1l) = NDOF

IPC = IPC+2

NE = NE+1

NTT = NTT+NDOF
GO TO 60

50 IB(JD) = JDES
IF(JD .GT. JDN) JDN=JD
60 CONTINUE
IF(NT .GT. MDOF) MDOF = NT
IF(IEL .EQ. NUMEL .OR. NE .EQ. 0) GO TO 90
IDES = IDES-NTT
JP = IPS+N+1
IF(JP .GT. JDN)} GO TO 90
DO 80 JD=JP,JDN
IF(IB(JD) .EQ. 0) GO TO 80
IPC =1
NT =0
DO 70 I=1,NE
IF(IB(JD) .LT. IC(IPC)) GO TO 70
NT = NT+IC(IPC+1)
70 IPC = IPC+2
IB(JD) = IB(JD)-NT
80 CONTINUE
90 CALL PRECUT (INTA, IEL,N, IA(IPS+l),IB(IPS+l))
100 CONTINUE
RETURN
END

SUBROUTINE SECOND(T)

IMPLICIT REAL*8 (A-H,0-Z)

INTEGER IH,IM,IS,IHS

CALL GETTIM(IH, IM, IS, IHS)
T=3600.DO*IH+60.DO*IM+IS+1.D0-2*IHS
T=0.D0

RETURN

END
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